Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these ...Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment 〉 NaOH treatment followed by ultrasonic treatment 〉 ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.展开更多
A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involve...A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involves autoheated thermophilic aerobic digestion at 55-60℃ inoculated with less-acidophilic thermophilic sulfur-oxidizing microorganisms (ATAD). The results show that it is possible to maintain the autoheated conditions (55-60℃) in the ATAD reactor up to 24 hr, leading to reduction of 21% total solids (TS), 27% volatile solids (VS), 27% suspended solids (SS) and 33% volatile suspended solids (VSS) from the sludge. The sludge pH also decreased from 7 to 4.6 due to the activity of less-acidophilic thermophilic microorganisms. In the second stage operation, the digested sludge (pH 4.6, TS 31.6 g/L) from stage one was subjected to bioleaching in a continuous stirred tank reactor, operated at mean hydraulic retention times (HRTs) of 12, 24 and 36 hr at 30℃. An HRT of 24 hr was found to be sufficient for removal of 70% Cu, 70% Mn, 75% Ni, and 80% Zn from the sludge. In all, 39% VSS, 76% Cu, 78.2% Mn, 79.5% Ni and 84.2% Zn were removed from the sludge in both the stages.展开更多
In order to enhance the efficiency of aerobic digestion, the excess sludge was irradiated by low intensity ultrasound at a frequency of 28 kHz and acoustic intensity of 0.53 W/cm^2. The results show that the sludge st...In order to enhance the efficiency of aerobic digestion, the excess sludge was irradiated by low intensity ultrasound at a frequency of 28 kHz and acoustic intensity of 0.53 W/cm^2. The results show that the sludge stabilization without ultrasonic treatment can be achieved after 17 d of digestion, whereas the digestion time of ultrasonic groups can be cut by 3-7 d. During the same digestion elapsing, in ultrasonic groups the total volatile suspended solid removal rate is higher than that in the control group. The kinetics of aerobic digestion of excess sludge with ultrasound can also be described with first-order reaction.展开更多
Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-p...Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.展开更多
Experiments were conducted to study the performance characters of aerobic/anoxic (A/ A) digestion of sludge at 30± 1 ℃, while the sludge retention time (SRT) was kept 16 d. The varia tions of oxidation redu...Experiments were conducted to study the performance characters of aerobic/anoxic (A/ A) digestion of sludge at 30± 1 ℃, while the sludge retention time (SRT) was kept 16 d. The varia tions of oxidation reduction potential (Eh ) and pH were continuously monitored during the A/A di gestion and the conversions of ammonium and nitrate were investigated. Important features on both Eh and pH profiles were identified to develop process control strategy. Since the feature point on Eh profile where d2 Eh/dt^2 =0 is very stable during anoxic cycle, it can be used to determine the end of denitrification. The end of nitrification can be identified according to dpH/dt = 0. A real-time control strategy of A/A digestion of sludge was developed and tested with pH and Eh as control parameters. It is shown that the performance of the real-time control strategy is better than that of a fixed time control strategy. While the real time controlled A/A digestion system can achieve a similar volatile suspended solids (VSS) destruction efficiency of 35.2 % as a continuously aerated system, it im proves the supernatant quality in a shorter aeration time(7. 75 d for a 20 d period).展开更多
Introduction Unconventional alternatives such as aerobic and anaerobic effluent from starch industry contain essential nutrients for Btk active ingredient synthesis.Effluent from starch industry is rich in carbon and ...Introduction Unconventional alternatives such as aerobic and anaerobic effluent from starch industry contain essential nutrients for Btk active ingredient synthesis.Effluent from starch industry is rich in carbon and nitrogen and can replace expensive feedstock used during the fermentation process.Objectives The main objective of this study was to achieve a biopesticide formulation from starch industry wastewater(SIW)with high entomotoxicity(UI/ml)of larvae comparable to Foray 76B,which is a commercial biopesticide.Methods Bacillus thuringiensis var kurstaki HD1(Btk)strain was cultivated and sub-cultured to aerobic,anaerobic digested effluent and SIW.Pre-treatment was carried on these different substrates to enhance the residual carbon required for Btk growth and delta endotoxin synthesis.After 48 hours of fermentation,cells count and delta-endotoxin were determined.A biopesticide formulation containing fermented broth and adjuvants was fed to larvae to determine larvae mortality.Results Btk cell growth and sporulation profile in SIW media displayed a high total cell count and viable spores compared to btk growth in anaerobic or aerobic media after 48h fermentation.The maximum endotoxin concentration in the SIW medium was 435μg/mL,whereas,in anaerobic and aerobic effluent,the maximum concentrations were at 161μg/mL and 136μg/mL,respectively.When acidic treatment was performed at pH 2 for these substrates,entomotoxicity obtained from aerobic and anaerobic biopesticide formulations displayed significantly higher entomoxicity than the untreated ones.The entomotoxicity of SIW treated at pH 2 was equivalent to the standard Foray 76B which is 20,000 IU/μL.Conclusion Anaerobic and aerobic effluent did not contain enough total organic carbon to augment Btk growth and entomo-toxicity.Substrates pre-treated at pH 2 provided significant organic matter for Btk growth and resulted in larval mortality equivalent to the com ercial biopesticide Foray 76B.展开更多
基金supported by the China NationalEleventh Five-Year Scientific and Technical Support Plan(No. 2006BAC02A18)
文摘Alkaline and ultrasonic sludge disintegration can be used as the pretreatment of waste activated sludge (WAS) to promote the subsequent anaerobic or aerobic digestion. In this study, different combinations of these two methods were investigated. The evaluation was based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the subsequent aerobic digestion. For WAS samples with combined pretreatment, the released COD levels were higher than those with ultrasonic or alkaline pretreatment alone. When combined with the ultrasonic treatment, NaOH treatment was more efficient than Ca(OH)2 for WAS solubilization. The COD levels released in various sequential options of combined NaOH and ultrasonic treatments were in the the following descending order: simultaneous treatment 〉 NaOH treatment followed by ultrasonic treatment 〉 ultrasonic treatment followed by NaOH treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7500 kJ/kg dry solid) were suitable for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with optimal parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than that with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.
文摘A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involves autoheated thermophilic aerobic digestion at 55-60℃ inoculated with less-acidophilic thermophilic sulfur-oxidizing microorganisms (ATAD). The results show that it is possible to maintain the autoheated conditions (55-60℃) in the ATAD reactor up to 24 hr, leading to reduction of 21% total solids (TS), 27% volatile solids (VS), 27% suspended solids (SS) and 33% volatile suspended solids (VSS) from the sludge. The sludge pH also decreased from 7 to 4.6 due to the activity of less-acidophilic thermophilic microorganisms. In the second stage operation, the digested sludge (pH 4.6, TS 31.6 g/L) from stage one was subjected to bioleaching in a continuous stirred tank reactor, operated at mean hydraulic retention times (HRTs) of 12, 24 and 36 hr at 30℃. An HRT of 24 hr was found to be sufficient for removal of 70% Cu, 70% Mn, 75% Ni, and 80% Zn from the sludge. In all, 39% VSS, 76% Cu, 78.2% Mn, 79.5% Ni and 84.2% Zn were removed from the sludge in both the stages.
文摘In order to enhance the efficiency of aerobic digestion, the excess sludge was irradiated by low intensity ultrasound at a frequency of 28 kHz and acoustic intensity of 0.53 W/cm^2. The results show that the sludge stabilization without ultrasonic treatment can be achieved after 17 d of digestion, whereas the digestion time of ultrasonic groups can be cut by 3-7 d. During the same digestion elapsing, in ultrasonic groups the total volatile suspended solid removal rate is higher than that in the control group. The kinetics of aerobic digestion of excess sludge with ultrasound can also be described with first-order reaction.
基金Supported by the Doctoral Foundation of Northeast Dianli University (BSJXM-200814)Foundations of Bureau of Jilin Province (2008424)
文摘Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2006AA06Z319)the National Key Technology R&D Programof the 11th Five-Year Plan China(2007BAK36B07)the Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ-28)
文摘Experiments were conducted to study the performance characters of aerobic/anoxic (A/ A) digestion of sludge at 30± 1 ℃, while the sludge retention time (SRT) was kept 16 d. The varia tions of oxidation reduction potential (Eh ) and pH were continuously monitored during the A/A di gestion and the conversions of ammonium and nitrate were investigated. Important features on both Eh and pH profiles were identified to develop process control strategy. Since the feature point on Eh profile where d2 Eh/dt^2 =0 is very stable during anoxic cycle, it can be used to determine the end of denitrification. The end of nitrification can be identified according to dpH/dt = 0. A real-time control strategy of A/A digestion of sludge was developed and tested with pH and Eh as control parameters. It is shown that the performance of the real-time control strategy is better than that of a fixed time control strategy. While the real time controlled A/A digestion system can achieve a similar volatile suspended solids (VSS) destruction efficiency of 35.2 % as a continuously aerated system, it im proves the supernatant quality in a shorter aeration time(7. 75 d for a 20 d period).
基金The research has been funded by Natural Sciences and Engineering Research Council of Canada(Grants A4984,STR 202047,SCF 192190-96 and Canada Research Chair).
文摘Introduction Unconventional alternatives such as aerobic and anaerobic effluent from starch industry contain essential nutrients for Btk active ingredient synthesis.Effluent from starch industry is rich in carbon and nitrogen and can replace expensive feedstock used during the fermentation process.Objectives The main objective of this study was to achieve a biopesticide formulation from starch industry wastewater(SIW)with high entomotoxicity(UI/ml)of larvae comparable to Foray 76B,which is a commercial biopesticide.Methods Bacillus thuringiensis var kurstaki HD1(Btk)strain was cultivated and sub-cultured to aerobic,anaerobic digested effluent and SIW.Pre-treatment was carried on these different substrates to enhance the residual carbon required for Btk growth and delta endotoxin synthesis.After 48 hours of fermentation,cells count and delta-endotoxin were determined.A biopesticide formulation containing fermented broth and adjuvants was fed to larvae to determine larvae mortality.Results Btk cell growth and sporulation profile in SIW media displayed a high total cell count and viable spores compared to btk growth in anaerobic or aerobic media after 48h fermentation.The maximum endotoxin concentration in the SIW medium was 435μg/mL,whereas,in anaerobic and aerobic effluent,the maximum concentrations were at 161μg/mL and 136μg/mL,respectively.When acidic treatment was performed at pH 2 for these substrates,entomotoxicity obtained from aerobic and anaerobic biopesticide formulations displayed significantly higher entomoxicity than the untreated ones.The entomotoxicity of SIW treated at pH 2 was equivalent to the standard Foray 76B which is 20,000 IU/μL.Conclusion Anaerobic and aerobic effluent did not contain enough total organic carbon to augment Btk growth and entomo-toxicity.Substrates pre-treated at pH 2 provided significant organic matter for Btk growth and resulted in larval mortality equivalent to the com ercial biopesticide Foray 76B.