The effects of different substrates on the aerobic granulation process were studied using laboratory-scale sequencing batch reactors (SBRs). Four parallel granules sequencing batch reactors (GSBR): R1, R2, R3, an...The effects of different substrates on the aerobic granulation process were studied using laboratory-scale sequencing batch reactors (SBRs). Four parallel granules sequencing batch reactors (GSBR): R1, R2, R3, and R4 were fed with acetate, glucose, peptone and fecula, respectively. Stable aerobic granules were successfully cultivated in R1, R2, R4, and smaller granules less than 500 μm were formed in R3. Morphology and the physic-chemical characteristics of aerobic granules fed with different carbon substrates were investigated by the four reactors operated under the same pressure. The aerobic granules in the four reactors were observed and found that peptone was the most stable one due to its good settleability even after a sludge age as short as 10 d. A strong correlation was testified between the characteristics of aerobic granules and the properties of carbon substrates. The stability of aerobic granules was affected by extracellular polymer substances (EPS) derived from microorganism growth during feast time fed with different carbon substrates, and the influence of the property of storage substance was greater than that of its quantity. Optimal carbon substrates, which are helpful in the cultivation and retention of well-settling granules and in the enhancement of the overall ability of the aerobic granules reactors, were found.展开更多
Lead(Pb) and its compounds are common pollutants in industrial wastewaters.To develop appropriate Pb 2+ treatment technologies,aerobic granules(AG) and bacterial alginates(BA) were studied as alternative biosorbents t...Lead(Pb) and its compounds are common pollutants in industrial wastewaters.To develop appropriate Pb 2+ treatment technologies,aerobic granules(AG) and bacterial alginates(BA) were studied as alternative biosorbents to remove Pb 2+ from aqueous solutions.The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb 2+ biosorption.In this paper,the Pb 2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH,contact time,and initial Pb 2+ concentration.The results showed that biosorption of Pb 2+ by AG and BA occurred within 60min at the initial Pb 2+ concentrations(0 150 mg L-1).The actual saturated Pb 2+ biosorption capability of AG was 101.97 mg g-1(dry weight of aerobic granular biomass).When the initial pH was 5,the biosorption capability of AG and BA was highest at the initial Pb 2+ concentrations(0 20mg L-1).During the process of Pb 2+ biosorption,K +,Ca 2+,and Mg 2+ were released.The Ion Chromatography(IC) and Fourier Transform Infrared Spectroscopy(FTIR) further highlighted the main role of ion exchange between Ca 2+ and Pb 2+ and sequestration of Pb 2+ with carboxyl(-COO) of AG and BA.This analogical analysis verifies that BA is responsible for biosorption of Pb 2+ by AG.At the same optimal pH,AG cultivated with different carbon source has different Pb 2+ biosorption capacity.The Pb 2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.展开更多
To investigate the shut-cut nitrification characteristics of aerobic granule,an aerobic granular sequencing batch airlift reactor(AG-SBAR) was carried out with mixed carbon sources of sodium acetate and glucose at 10&...To investigate the shut-cut nitrification characteristics of aerobic granule,an aerobic granular sequencing batch airlift reactor(AG-SBAR) was carried out with mixed carbon sources of sodium acetate and glucose at 10±1 ℃.Results indicated that ammonia oxidizing bacteria was accumulated inside the aerobic granules and the reactor performed stably with shut-cut nitrification for a long term at low temperature.During the stable operation period,the effluent ammonia nitrogen concentration was maintained at 13.6 mg/L without nitrate and nitrite when the COD/N ratio was 20:1.However,the effluent concentration of ammonia nitrogen was below 0.5 mg/L with effluent nitrosation ratio of 96.7% on average when the COD/N ratio was reduced to 15:1 and 10:1.And the effluent phosphorus concentration was less than 0.4 mg/L during the stable period with the sludge retention time of 30 d.The phosphorus removal efficiency was not strongly influenced by the adjustment of COD/N ratio in this experiment.The removal efficiencies for COD,NH4+-N and PO43--P were 91.3%-94.6%,97.9%-99.7% and 97.1%-99.5%,respectively.展开更多
Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under d...Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aerobic granules was investigated. After two-month storage the granules sealed at 4 ~C in distilled water or normal saline (named granules A and granules B, respectively) could maintain their characteristics as before, while the granules idled in the reactor at room temperature (named granules C) exhibited decreased properties. During reactivation, granules A and granules B presented almost identical recovery performance, faster than granules C, in terms of phosphorus removal efficiency, mixed liquor sus- pended solids (MLSS), phosphate release and accumulating ability. The results suggest that hermetical storage at low temperature promoted the maintenance of the granular properties and the reviving behaviors of phosphateaccumulating aerobic granules, and storage medium had little influence on the storage and recovery perfomlance.展开更多
Cultivation of aerobic granules for simultaneous nitrification and denitrification in two sequencing batch airlift bioreactors was studied. Conventional activated floc and anaerobic granules served as main two inocula...Cultivation of aerobic granules for simultaneous nitrification and denitrification in two sequencing batch airlift bioreactors was studied. Conventional activated floc and anaerobic granules served as main two inoculated sludge in the systems. Morphological variations of sludge in the reactors were observed. It was found that the cultivation of aerobic granules was closely associated with the kind of inoculated sludge. Round and regular aerobic granules were prevailed in both reactors, and the physical characteristics of the aerobic granules in terms of settling ability, specific gravity, and ratio of water containing were distinct when the inoculate sludge was different. Aerobic granules formed by seeding activated floc are more excellent in simultaneous nitrification and denitrification than that by aerobic granules formed from anaerobic granules. It was concluded that inoculated sludge plays a crucial role in the cultivation of aerobic granules for simultaneous nitrification and denitrification.展开更多
Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor(SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules...Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor(SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.展开更多
Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules...Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules seeded with activated sludge flocs, those seeded with pellets had shorter start-up time, larger diameter, better chemical oxygen demand removal efficiency, and higher hydrophobicity, suspended solid concentration, and Mg 2+ content. The different inocula led the granule surface with different microbial morphologies, but did not result in different distribution patterns of extracellular polymeric substances and cells. The anaerobic bacterium Anoxybacillus sp. was detected in the granules seeded with pellets. These results highlighted the advantage of pellet over activated sludge floc as the seed for aerobic granulation and wastewater treatment.展开更多
The present study investigated the relationship between N-acyl-homoserine lactone(AHL)-based quorum sensing(QS) and the physico-chemical properties of aerobic granules.Stable mature granules were observed in SBR2 ...The present study investigated the relationship between N-acyl-homoserine lactone(AHL)-based quorum sensing(QS) and the physico-chemical properties of aerobic granules.Stable mature granules were observed in SBR2 and SBR3 with average diameters of 0.96,and1.49 mm,respectively. The sludge densities of aerobic granules in SBR2 and SBR3 were1.0246,and 1.0201 g/mL,respectively,which were higher than that of flocculent sludge in SBR1(1.0065 g/mL). The results showed that the activity of AHL-based QS in SBR2 and SBR3 amounted to 2.4- and 2.1-fold induction,however,that in SBR1 with flocculent sludge was1.6-fold induction. In addition,the results also showed that the activity of AHL-based QS in the three reactors rose in the feast condition,and then dropped with the consumption of substrate. However,the activity of AHL-based QS in these three reactors recovered again in prolonged starvation. Furthermore,the results showed that the enhancement of AHL-based QS favored the extracellular polymeric substance production of microorganisms in activated sludge. Thus,it could be concluded that aerobic granules showed higher AHL-based QS than flocculent sludge,which resulted from the higher sludge density of aerobic granules than flocculent sludge. AHL-based QS was related to the metabolism energy in the feast condition; however,in prolonged starvation,microorganisms would emit more AHL-like molecules to protect themselves to resist starvation. Moreover,the enhancement of AHL-based QS favored the EPS component productivity of the microorganisms in activated sludge,which contributed to maintain the aerobic granular structure.展开更多
The cultivation of aerobic granules in sequencing batch reactor for the biodegradation of p-cresol was studied. The reactor was started with 100 mg/L of p-cresol. Aerobic granules first appeared within one month of st...The cultivation of aerobic granules in sequencing batch reactor for the biodegradation of p-cresol was studied. The reactor was started with 100 mg/L of p-cresol. Aerobic granules first appeared within one month of start up. The granules were large and strong and had a compact structure. The diameter of stable granules was in the range of 1-5 mm. The integrity coefficient and granules density was found to be 96% and 1046 kg/m3, raspectively, The settling velocity of granules was found to be in the range of 2×10^-2-6×10^-7 m/sec. The aerobic granules were able to degrade p-cresol upto 800 mg/L at a removal efficiency of 88%. Specific p-cresol degradation rate in aerobic granules followed Haldane model for substrate inhibition, High specific p-cresol degradation rate up to 0,96 g pcresol/(g VSS.day) were sustained upto p-cresol concentration of 400 mg/L, Higher removal efficiency, good settling characteristics of aerobic granules, makes sequencing batch reactor suitable for erLhaneing the microorganism potential for biodegradation of inhibitory compounds.展开更多
Aerobic granules, pre-cultivated at the organic loading rate (OLR) of 3.0 kg COD/(m3 ·day), were used to treat low-strength wastewater in two sequencing batch reactors at low OLRs of 1.2 and 0.6 kg COD/(m3 &...Aerobic granules, pre-cultivated at the organic loading rate (OLR) of 3.0 kg COD/(m3 ·day), were used to treat low-strength wastewater in two sequencing batch reactors at low OLRs of 1.2 and 0.6 kg COD/(m3 ·day), respectively. Reactor performance, evolution of granule morphology, structure and microbial community at low OLRs under long-term operation (130 days) were investigated. Results showed that low OLRs did not cause significant damage to granule structure as a dominant granule morphology with size over 540 μm was maintained throughout the operation. Aerobic granules at sizes of about 750 μm were finally obtained at the low OLRs. The granule reactors operated at low OLRs demonstrated effective COD and ammonia removals (above 90%), smaller granule sizes and less biomass. The contents of extracellular polymeric substances in the granules were decreased while the ratios of exopolysaccharide/exoprotein were increased (above 1.0). The granules cultivated at the low OLRs showed a smoother surface and more compact structure than the seeded granules. A significant shift in microbial community was observed but the microbial diversity remained relatively stable. Confocal Laser Scanning Microscopy observation showed that the live cells were spread throughout the whole granule, while the dead cells were mainly concentrated in the outer layer of the granule, and the proteins, polysaccharides and lipids were mainly located in the central regime of the granule. In conclusion, granules cultivated at high OLRs show potential for treating low-strength organic wastewater steadily under long-term operation.展开更多
Interactions between metals and activated sludge can substantially affect the fate and transport of heavy metals in wastewater treatment plants. Therefore, it is important to develop a simple, fast and efficient metho...Interactions between metals and activated sludge can substantially affect the fate and transport of heavy metals in wastewater treatment plants. Therefore, it is important to develop a simple, fast and efficient method to elucidate the interaction. In this study, a modified titration method with a dynamic mode was developed to investigate the binding of Cu(Ⅱ), a typical heavy metal, onto aerobic granules. The titration results indicated that pH and ionic strength both had a positive effect on the biosorption capacity of the granular sludge. The/-XRF results demonstrated that the distribution of metals on the granular surface was heterogeneous, and Cu showed strong correlations and had the same "hot spots" positions with other metal ions (e.g., Ca, Mg, Fe etc.). Ion exchange and complexing were the main mechanisms for the biosorption of Cu(Ⅱ) by aerobic granules. These results would be beneficial for better understanding of Cu(Ⅱ) migration and its fate in wastewater treatment plants.展开更多
A sequencing batch reactor (SBR) seeded with activated sludge was established for landfill leachate treatment. Small bio-aggregates began to appear after 40-d operation, and gradually changed to mature aerobic granu...A sequencing batch reactor (SBR) seeded with activated sludge was established for landfill leachate treatment. Small bio-aggregates began to appear after 40-d operation, and gradually changed to mature aerobic granules, with a mean size of 0.36-0.60 ram. Their sludge volume index at 5 min (SVI5 rain), mixed liquor volatile suspended solids (MLVSS), and wet density were around 35 ml/g, 3.4 g/L, and 1.062 g/cm3, respectively. The settling velocities of the granules in distilled water ranged from 0.3 to 1.3 cm/s, which were faster than those in landfill leachate with a salt content of 1.4% (w/v), and also slightly faster than those predicted by Stokes' law for porous but impermeable particles. Microbial community evolution during the granulation process and stages under different nitrogen loading rates (NLRs) were monitored and analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), cloning, and sequencing of 16S ribosomal RNA (rRNA) fragments. Results revealed that some primary and dominant communities in inoculating activated sludge died out gradually; while a few common bacteria, inhabiting soils, municipal wastewater, or activated sludge systems, dominated in the SBR system throughout. In addition, some other dominant species, associated with the aerobic granulation process, were thought to play a significant role in the formation and growth of aerobic granular sludge. During the stable operation time under low NLR, a few species were present in abundance, and may have been responsible for the high organic removal efficiency at this time.展开更多
Aerobic granular sludge was cultivated in sequencing batch airlift reactors (SBAR) at 25, 30, and 35℃, respectively. The effect of temperature on the granules characteristics was analyzed and the microbial communit...Aerobic granular sludge was cultivated in sequencing batch airlift reactors (SBAR) at 25, 30, and 35℃, respectively. The effect of temperature on the granules characteristics was analyzed and the microbial community structures of the granules were probed using scanning electron microscope (SEM) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that 30℃ is optimum for matured granule cultivation, where the granules had a more compact structure, better settling ability and higher bioactivity, the oxygen utilization rate (OUR) reached 1.14 mg O2/(g MLVSS.min) with COD removal rate of 97% and TP removal rate of 75%. The removal efficiency of NH3-N increased from 68.5% to 87.5% along with the temperature increment from 25 to 35℃. The DGGE profiles revealed that the microbial community structure at 25℃ showed the least similarity with those at other temperatures. The sequencing results indicated that the majority of dominant microbes belonged to Actinobacteria and Proteobacterium. Thermomonas sp., Ottowia sp. and Curtobacteriurn ammoniigenes might play important roles at different temperatures, respectively.展开更多
The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were e...The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were extracted and analyzed during the granulation and storage process. The results show that the contents of protein and EPS increase along with the granulation process, while polysaccharides remain almost unchanged. The content of protein in EPS is almost two-fold larger than that of polysaccharides in granular sludge cultivated with municipal wastewater. Moreover, some of the granules disintegrate during storage, corresponding to the decrease of protein contents in EPS. Three peaks are identified in three-dimensional excitation emission matrix (EEM) fluorescence spectra of the EPS in the aerobic granules. Two peaks (A and B) are attributed to the protein-like fluorophores, and the third (peak C) is related to visible fulvic-like substances. Peak A gradually disappears during storage, while a new peak related to ultraviolet fulvic acid (peak D) is formed. The formation and the stability of aerobic granules are closely dependent on the quantity and composition of EPS proteins. Peak C has no obvious changes during granulation, while the fulvic-like substances present an increase in fluorescence intensities during storage, accompanied with an increase in structural complexity. The fulvie-like substances are also associated with the disintegration of the aerobic granules.展开更多
The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surfa...The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surface properties of glucose-fed aerobic granules. The results show that aerobic granular sludge contains more EPS than seed sludge, and it is about 47 mg/gMLSS. Corresponding to the changes of EPS, the surface charge of microorganisms in granules increases from -0.732 to -0.845 meq/gMLSS, whereas the hydrophobicty changes significantly from 48.46% to 73.16%. It is obviously that changes of EPS in sludge alter the negative surface charge and hydrophobicity of microorganisms in granules, enhance the polymeric interaction and promote the aerobic granulation. Moreover, EPS can serve as carbon and energy reserves in granulation, thus the growth between the interior and exterior bacteria is balanced, and the integrality of granules is maintained. SEM observation of the granules exhibits that EPS in granules are ropy; by mixing with bacteria, compact matrix structure can be formed. The distribution of EPS in granules profiles the importance of EPS storage. It can be concluded that EPS play a crucial role in aerobic granulation.展开更多
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies.High solids retention is often achieved through aggregat...The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies.High solids retention is often achieved through aggregation of microbial communities into dense,spherical aggregates known as granules,which were initially discovered in the 1980s.These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions.Furthermore,granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation(anammox)technologies.The mechanisms underpinning the formation of methanogenic,aerobic,and anammox granules are the subject of ongoing research.Although each granule type has been extensively studied in isolation,there has been a lack of comparative studies among these granulation processes.It is likely that there are some unifying concepts that are shared by all three sludge types.Identifying these unifying concepts could allow a unified theory of granulation to be formed.Here,we review the granulation mechanisms of methanogenic,aerobic,and anammox granular sludge,highlighting several common concepts,such as the role of extracellular polymeric substances,cations,and operational parameters like upflow velocity and shear force.We have then identified some unique features of each granule type,such as different internal structures,microbial compositions,and quorum sensing systems.Finally,we propose that future research should prioritize aspects of microbial ecology,such as community assembly or interspecies interactions in individual granules during their formation and growth.展开更多
Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure wit...Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure with 5% sodium chloride in the substrate. In the early period of experiment, coccoid and rode-like bacteria predominated in the yellowish-brown granules, and later the white and the black granules were developed by filamentous microorganisms. The filamentous granules exhibited low porosity and fast settling velocity, and were more compact even than bacteria granules. It was hypothesized that the elevated pH in the later period might be a possible reason for the compact growth of filamentous granules. However, the bacteria granules showed the high bioactivity in terms of specific oxygen utilizing rate, and comprised of a wider diversity of compounds based on the thermogravimetric evaluation. The findings in this study demonstrated that filamentous microbes could form compact granular structure, which may encourage the utilization of filamentous microorganisms rather than the inhibition of their growth, as the latter is frequently used for sludge bulking control.展开更多
The granulation process, physic-chemical properties, pollution removal ability and bacterial com- munities of aerobic granules with different feed-waste- water (synthetic wastewater, R1; swine wastewater, R2), and t...The granulation process, physic-chemical properties, pollution removal ability and bacterial com- munities of aerobic granules with different feed-waste- water (synthetic wastewater, R1; swine wastewater, R2), and the change trend of some parameters of two types of granules in long-term operated reactors treating swine wastewater were investigated in this experiment. The result indicated that aerobic granulation with the synthetic wastewater had a faster rate compared with swine waste- water and that full granulation in R 1 and R2 was reached on the 30th day and 39th day, respectively. However, although the feed wastewater also had an obvious effect on the biomass fraction and extracellular polymeric sub- stances of the aerobic granules during the granulation process, these properties remained at a similar level after long-term operation. Moreover, a similar increasing trend could also be observed in terms of the nitrogen removal efficiencies of the aerobic granules in both reactors, and the average specific removal rates of the organics and ammonia nitrogen at the steady-state stage were 35.33mg.g^-1 VSS and 51.46mg.g^-1 VSS for R1, and 35.47mg.g^-1 VSS and 51.72mg.g^-1 VSS for R2, respectively. In addition, a shift in the bacterial diversity occurred in the granulation process, whereas bacterial communities in the aerobic granular reactor were not affected by the seed granules after long-term operation.展开更多
In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of micr...In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16 s rDNA sequence and denaturing gradient gel electrophoresis(DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index(SVI) value of 20 m L/g, high extracellular polymeric substance(EPS) content of 183.3 mg/L, high NH4+-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules.展开更多
The effect of COD/N ratio on the granulation process and microbial population succession was investigated.Four identical sequencing batch reactors,R1,R2,R3 and R4,were operated with various initial COD/N ratios rangin...The effect of COD/N ratio on the granulation process and microbial population succession was investigated.Four identical sequencing batch reactors,R1,R2,R3 and R4,were operated with various initial COD/N ratios ranging from 0/200 to 800/200(m/m).Ethanol was fed as the source of COD.Aerobic granules were successfully cultivated in R2 and R3,operating with the COD/N ratio of 200/200 and 400/200,respectively.Scanning electron microscope observations indicated that short rod-shaped and spherical bacteria were dominant in R2,while granules produced in R3 were surrounded with a large amount of filamentous bacteria.The average specific nitritation rate in R2 and R3 were 0.019 and 0.008 mg N/(mg MLVSS.hr),respectively.Fluorescence in situ hybridization results demonstrated that nitrifying bacteria population was enriched remarkably in R2.It indicated that nitrification ability and nitrifying bacteria population were enriched remarkably at low COD/N ratio.However,no granules were formed in R1 and R4 which might attribute to either limited or excessive extracellular polymeric substances production.This study contributed to a better understanding of the role of COD/N ratio in nitrifying sludge granulation.展开更多
文摘The effects of different substrates on the aerobic granulation process were studied using laboratory-scale sequencing batch reactors (SBRs). Four parallel granules sequencing batch reactors (GSBR): R1, R2, R3, and R4 were fed with acetate, glucose, peptone and fecula, respectively. Stable aerobic granules were successfully cultivated in R1, R2, R4, and smaller granules less than 500 μm were formed in R3. Morphology and the physic-chemical characteristics of aerobic granules fed with different carbon substrates were investigated by the four reactors operated under the same pressure. The aerobic granules in the four reactors were observed and found that peptone was the most stable one due to its good settleability even after a sludge age as short as 10 d. A strong correlation was testified between the characteristics of aerobic granules and the properties of carbon substrates. The stability of aerobic granules was affected by extracellular polymer substances (EPS) derived from microorganism growth during feast time fed with different carbon substrates, and the influence of the property of storage substance was greater than that of its quantity. Optimal carbon substrates, which are helpful in the cultivation and retention of well-settling granules and in the enhancement of the overall ability of the aerobic granules reactors, were found.
基金supported by the National Natural Science Foundation of China (No. 30570339)the Key Science & Technology Project of the Ministry of Education China (No.106105)
文摘Lead(Pb) and its compounds are common pollutants in industrial wastewaters.To develop appropriate Pb 2+ treatment technologies,aerobic granules(AG) and bacterial alginates(BA) were studied as alternative biosorbents to remove Pb 2+ from aqueous solutions.The biosorption mechanism of AG and BA were further analyzed to determine which functional groups in AG and BA are active in Pb 2+ biosorption.In this paper,the Pb 2+ biosorption behavior of AG and BA was respectively investigated in batch experiments from the perspectives of the initial pH,contact time,and initial Pb 2+ concentration.The results showed that biosorption of Pb 2+ by AG and BA occurred within 60min at the initial Pb 2+ concentrations(0 150 mg L-1).The actual saturated Pb 2+ biosorption capability of AG was 101.97 mg g-1(dry weight of aerobic granular biomass).When the initial pH was 5,the biosorption capability of AG and BA was highest at the initial Pb 2+ concentrations(0 20mg L-1).During the process of Pb 2+ biosorption,K +,Ca 2+,and Mg 2+ were released.The Ion Chromatography(IC) and Fourier Transform Infrared Spectroscopy(FTIR) further highlighted the main role of ion exchange between Ca 2+ and Pb 2+ and sequestration of Pb 2+ with carboxyl(-COO) of AG and BA.This analogical analysis verifies that BA is responsible for biosorption of Pb 2+ by AG.At the same optimal pH,AG cultivated with different carbon source has different Pb 2+ biosorption capacity.The Pb 2+ biosorption by AG with sodium acetate as the sole carbon source is higher than AG with glucose as carbon source.
基金Sponsored by the National High Technology Research and Development Program of China (Grant No.2008AA06Z304)Key Projects in National Science & Technology Pillar Program of China (Grant No.2006BAJ08B09)+1 种基金Foundation for Innovative Research Groups of the National Natural Science Founda-tion of China (Grant No.50821002)Heilongjiang Province Key Scientific and Technological Project (Grant No.GB06C20403)
文摘To investigate the shut-cut nitrification characteristics of aerobic granule,an aerobic granular sequencing batch airlift reactor(AG-SBAR) was carried out with mixed carbon sources of sodium acetate and glucose at 10±1 ℃.Results indicated that ammonia oxidizing bacteria was accumulated inside the aerobic granules and the reactor performed stably with shut-cut nitrification for a long term at low temperature.During the stable operation period,the effluent ammonia nitrogen concentration was maintained at 13.6 mg/L without nitrate and nitrite when the COD/N ratio was 20:1.However,the effluent concentration of ammonia nitrogen was below 0.5 mg/L with effluent nitrosation ratio of 96.7% on average when the COD/N ratio was reduced to 15:1 and 10:1.And the effluent phosphorus concentration was less than 0.4 mg/L during the stable period with the sludge retention time of 30 d.The phosphorus removal efficiency was not strongly influenced by the adjustment of COD/N ratio in this experiment.The removal efficiencies for COD,NH4+-N and PO43--P were 91.3%-94.6%,97.9%-99.7% and 97.1%-99.5%,respectively.
文摘Phosphate-accumulating aerobic granules cultivated in a sequencing batch reactor were composed of inner rod-shaped bacteria aggregates and outer twining filamentous bacteria. The influence of two-month storage under dif- ferent conditions on the storage and subsequent reactivation performance of aerobic granules was investigated. After two-month storage the granules sealed at 4 ~C in distilled water or normal saline (named granules A and granules B, respectively) could maintain their characteristics as before, while the granules idled in the reactor at room temperature (named granules C) exhibited decreased properties. During reactivation, granules A and granules B presented almost identical recovery performance, faster than granules C, in terms of phosphorus removal efficiency, mixed liquor sus- pended solids (MLSS), phosphate release and accumulating ability. The results suggest that hermetical storage at low temperature promoted the maintenance of the granular properties and the reviving behaviors of phosphateaccumulating aerobic granules, and storage medium had little influence on the storage and recovery perfomlance.
文摘Cultivation of aerobic granules for simultaneous nitrification and denitrification in two sequencing batch airlift bioreactors was studied. Conventional activated floc and anaerobic granules served as main two inoculated sludge in the systems. Morphological variations of sludge in the reactors were observed. It was found that the cultivation of aerobic granules was closely associated with the kind of inoculated sludge. Round and regular aerobic granules were prevailed in both reactors, and the physical characteristics of the aerobic granules in terms of settling ability, specific gravity, and ratio of water containing were distinct when the inoculate sludge was different. Aerobic granules formed by seeding activated floc are more excellent in simultaneous nitrification and denitrification than that by aerobic granules formed from anaerobic granules. It was concluded that inoculated sludge plays a crucial role in the cultivation of aerobic granules for simultaneous nitrification and denitrification.
文摘Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor(SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.
基金supported by the National Natural Science Foundation of China(No.20977066)the National Key Project for Water Pollution Control(No.2008ZX07316-002,2008ZX07317-003)the Specialized Research Fund for Doctoral Program of Higher Education of China(No.200802470029)
文摘Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules seeded with activated sludge flocs, those seeded with pellets had shorter start-up time, larger diameter, better chemical oxygen demand removal efficiency, and higher hydrophobicity, suspended solid concentration, and Mg 2+ content. The different inocula led the granule surface with different microbial morphologies, but did not result in different distribution patterns of extracellular polymeric substances and cells. The anaerobic bacterium Anoxybacillus sp. was detected in the granules seeded with pellets. These results highlighted the advantage of pellet over activated sludge floc as the seed for aerobic granulation and wastewater treatment.
基金supported by the National Natural Science Found of China (No.51078036)
文摘The present study investigated the relationship between N-acyl-homoserine lactone(AHL)-based quorum sensing(QS) and the physico-chemical properties of aerobic granules.Stable mature granules were observed in SBR2 and SBR3 with average diameters of 0.96,and1.49 mm,respectively. The sludge densities of aerobic granules in SBR2 and SBR3 were1.0246,and 1.0201 g/mL,respectively,which were higher than that of flocculent sludge in SBR1(1.0065 g/mL). The results showed that the activity of AHL-based QS in SBR2 and SBR3 amounted to 2.4- and 2.1-fold induction,however,that in SBR1 with flocculent sludge was1.6-fold induction. In addition,the results also showed that the activity of AHL-based QS in the three reactors rose in the feast condition,and then dropped with the consumption of substrate. However,the activity of AHL-based QS in these three reactors recovered again in prolonged starvation. Furthermore,the results showed that the enhancement of AHL-based QS favored the extracellular polymeric substance production of microorganisms in activated sludge. Thus,it could be concluded that aerobic granules showed higher AHL-based QS than flocculent sludge,which resulted from the higher sludge density of aerobic granules than flocculent sludge. AHL-based QS was related to the metabolism energy in the feast condition; however,in prolonged starvation,microorganisms would emit more AHL-like molecules to protect themselves to resist starvation. Moreover,the enhancement of AHL-based QS favored the EPS component productivity of the microorganisms in activated sludge,which contributed to maintain the aerobic granular structure.
基金supported by UP Council of Science and Technology (UPCST), Uttar Pradesh, India
文摘The cultivation of aerobic granules in sequencing batch reactor for the biodegradation of p-cresol was studied. The reactor was started with 100 mg/L of p-cresol. Aerobic granules first appeared within one month of start up. The granules were large and strong and had a compact structure. The diameter of stable granules was in the range of 1-5 mm. The integrity coefficient and granules density was found to be 96% and 1046 kg/m3, raspectively, The settling velocity of granules was found to be in the range of 2×10^-2-6×10^-7 m/sec. The aerobic granules were able to degrade p-cresol upto 800 mg/L at a removal efficiency of 88%. Specific p-cresol degradation rate in aerobic granules followed Haldane model for substrate inhibition, High specific p-cresol degradation rate up to 0,96 g pcresol/(g VSS.day) were sustained upto p-cresol concentration of 400 mg/L, Higher removal efficiency, good settling characteristics of aerobic granules, makes sequencing batch reactor suitable for erLhaneing the microorganism potential for biodegradation of inhibitory compounds.
基金supported by the National Natural Science Foundation of China (No. 21077012, 51178049)
文摘Aerobic granules, pre-cultivated at the organic loading rate (OLR) of 3.0 kg COD/(m3 ·day), were used to treat low-strength wastewater in two sequencing batch reactors at low OLRs of 1.2 and 0.6 kg COD/(m3 ·day), respectively. Reactor performance, evolution of granule morphology, structure and microbial community at low OLRs under long-term operation (130 days) were investigated. Results showed that low OLRs did not cause significant damage to granule structure as a dominant granule morphology with size over 540 μm was maintained throughout the operation. Aerobic granules at sizes of about 750 μm were finally obtained at the low OLRs. The granule reactors operated at low OLRs demonstrated effective COD and ammonia removals (above 90%), smaller granule sizes and less biomass. The contents of extracellular polymeric substances in the granules were decreased while the ratios of exopolysaccharide/exoprotein were increased (above 1.0). The granules cultivated at the low OLRs showed a smoother surface and more compact structure than the seeded granules. A significant shift in microbial community was observed but the microbial diversity remained relatively stable. Confocal Laser Scanning Microscopy observation showed that the live cells were spread throughout the whole granule, while the dead cells were mainly concentrated in the outer layer of the granule, and the proteins, polysaccharides and lipids were mainly located in the central regime of the granule. In conclusion, granules cultivated at high OLRs show potential for treating low-strength organic wastewater steadily under long-term operation.
基金The authors wish to thank the National Natural Science Foundation of China (Grant Nos. 51322802 and 21377123), the Program for Changjiang Scholars and Innovative Research Team in University, and the Fundamental Research Funds for the Central Universities (WK2060190040 and WK3530000002) for the partial support of this study. Authors also wish to thank the Shanghai Synchrotron Radiation Facility, Shanghai, China for μ-XRF analysis.
文摘Interactions between metals and activated sludge can substantially affect the fate and transport of heavy metals in wastewater treatment plants. Therefore, it is important to develop a simple, fast and efficient method to elucidate the interaction. In this study, a modified titration method with a dynamic mode was developed to investigate the binding of Cu(Ⅱ), a typical heavy metal, onto aerobic granules. The titration results indicated that pH and ionic strength both had a positive effect on the biosorption capacity of the granular sludge. The/-XRF results demonstrated that the distribution of metals on the granular surface was heterogeneous, and Cu showed strong correlations and had the same "hot spots" positions with other metal ions (e.g., Ca, Mg, Fe etc.). Ion exchange and complexing were the main mechanisms for the biosorption of Cu(Ⅱ) by aerobic granules. These results would be beneficial for better understanding of Cu(Ⅱ) migration and its fate in wastewater treatment plants.
基金Project supported by the National Water Pollution Control and Man-agement Project of China (No. 2009ZX07314-002)the Tianjin Science and Technology Development Program (No. 06YFGZSH06700)the Science and Technology Planning Project of Tianjin Binhai New Area, China (No. 2010-Bk130067)
文摘A sequencing batch reactor (SBR) seeded with activated sludge was established for landfill leachate treatment. Small bio-aggregates began to appear after 40-d operation, and gradually changed to mature aerobic granules, with a mean size of 0.36-0.60 ram. Their sludge volume index at 5 min (SVI5 rain), mixed liquor volatile suspended solids (MLVSS), and wet density were around 35 ml/g, 3.4 g/L, and 1.062 g/cm3, respectively. The settling velocities of the granules in distilled water ranged from 0.3 to 1.3 cm/s, which were faster than those in landfill leachate with a salt content of 1.4% (w/v), and also slightly faster than those predicted by Stokes' law for porous but impermeable particles. Microbial community evolution during the granulation process and stages under different nitrogen loading rates (NLRs) were monitored and analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), cloning, and sequencing of 16S ribosomal RNA (rRNA) fragments. Results revealed that some primary and dominant communities in inoculating activated sludge died out gradually; while a few common bacteria, inhabiting soils, municipal wastewater, or activated sludge systems, dominated in the SBR system throughout. In addition, some other dominant species, associated with the aerobic granulation process, were thought to play a significant role in the formation and growth of aerobic granular sludge. During the stable operation time under low NLR, a few species were present in abundance, and may have been responsible for the high organic removal efficiency at this time.
基金supported by the Hi-Tech Re-search and Development Program (863) of China (No.2002AA601310)the Natural Science Foundation ofHeilongjiang Province (No. E200824)
文摘Aerobic granular sludge was cultivated in sequencing batch airlift reactors (SBAR) at 25, 30, and 35℃, respectively. The effect of temperature on the granules characteristics was analyzed and the microbial community structures of the granules were probed using scanning electron microscope (SEM) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that 30℃ is optimum for matured granule cultivation, where the granules had a more compact structure, better settling ability and higher bioactivity, the oxygen utilization rate (OUR) reached 1.14 mg O2/(g MLVSS.min) with COD removal rate of 97% and TP removal rate of 75%. The removal efficiency of NH3-N increased from 68.5% to 87.5% along with the temperature increment from 25 to 35℃. The DGGE profiles revealed that the microbial community structure at 25℃ showed the least similarity with those at other temperatures. The sequencing results indicated that the majority of dominant microbes belonged to Actinobacteria and Proteobacterium. Thermomonas sp., Ottowia sp. and Curtobacteriurn ammoniigenes might play important roles at different temperatures, respectively.
基金Project(2006AA06Z318) supported by the National High-Tech Research and Development Program of China
文摘The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were extracted and analyzed during the granulation and storage process. The results show that the contents of protein and EPS increase along with the granulation process, while polysaccharides remain almost unchanged. The content of protein in EPS is almost two-fold larger than that of polysaccharides in granular sludge cultivated with municipal wastewater. Moreover, some of the granules disintegrate during storage, corresponding to the decrease of protein contents in EPS. Three peaks are identified in three-dimensional excitation emission matrix (EEM) fluorescence spectra of the EPS in the aerobic granules. Two peaks (A and B) are attributed to the protein-like fluorophores, and the third (peak C) is related to visible fulvic-like substances. Peak A gradually disappears during storage, while a new peak related to ultraviolet fulvic acid (peak D) is formed. The formation and the stability of aerobic granules are closely dependent on the quantity and composition of EPS proteins. Peak C has no obvious changes during granulation, while the fulvic-like substances present an increase in fluorescence intensities during storage, accompanied with an increase in structural complexity. The fulvie-like substances are also associated with the disintegration of the aerobic granules.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50778110)Shanghai"Chenguang"Program (Grant No.2007CG39)
文摘The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surface properties of glucose-fed aerobic granules. The results show that aerobic granular sludge contains more EPS than seed sludge, and it is about 47 mg/gMLSS. Corresponding to the changes of EPS, the surface charge of microorganisms in granules increases from -0.732 to -0.845 meq/gMLSS, whereas the hydrophobicty changes significantly from 48.46% to 73.16%. It is obviously that changes of EPS in sludge alter the negative surface charge and hydrophobicity of microorganisms in granules, enhance the polymeric interaction and promote the aerobic granulation. Moreover, EPS can serve as carbon and energy reserves in granulation, thus the growth between the interior and exterior bacteria is balanced, and the integrality of granules is maintained. SEM observation of the granules exhibits that EPS in granules are ropy; by mixing with bacteria, compact matrix structure can be formed. The distribution of EPS in granules profiles the importance of EPS storage. It can be concluded that EPS play a crucial role in aerobic granulation.
基金GC,MP and SM were supported by a European Research Council Starting Grant awarded to GC(3C-BIOTECH 261330)by a Science Foundation Ireland Career Development Award(17/CDA/4658)to GC+1 种基金VOF is supported by the Enterprise Ireland Technology Centres Programme(TC/2014/0016)Science Foundation Ireland(14/IA/2371 and 16/RC/3889).
文摘The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies.High solids retention is often achieved through aggregation of microbial communities into dense,spherical aggregates known as granules,which were initially discovered in the 1980s.These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions.Furthermore,granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation(anammox)technologies.The mechanisms underpinning the formation of methanogenic,aerobic,and anammox granules are the subject of ongoing research.Although each granule type has been extensively studied in isolation,there has been a lack of comparative studies among these granulation processes.It is likely that there are some unifying concepts that are shared by all three sludge types.Identifying these unifying concepts could allow a unified theory of granulation to be formed.Here,we review the granulation mechanisms of methanogenic,aerobic,and anammox granular sludge,highlighting several common concepts,such as the role of extracellular polymeric substances,cations,and operational parameters like upflow velocity and shear force.We have then identified some unique features of each granule type,such as different internal structures,microbial compositions,and quorum sensing systems.Finally,we propose that future research should prioritize aspects of microbial ecology,such as community assembly or interspecies interactions in individual granules during their formation and growth.
基金supported by the National Natural Science Foundation of China (No.50708089)the Program for Changjiang Scholars and Innovative Research Team in University of MOE of China (PCSIRT) (No.IRT0853)+1 种基金the Natural Science Foundation of Shaanxi Province (No.2009JQ7002)the Research Plant for Key Laboratoryof Universities of Shaanxi Province (No.09JS027)
文摘Proliferation of filamentous microorganisms frequently leads to operational failure for activate sludge systems. In this study, it was found that filamentous microorganisms could grow in compact granular structure with 5% sodium chloride in the substrate. In the early period of experiment, coccoid and rode-like bacteria predominated in the yellowish-brown granules, and later the white and the black granules were developed by filamentous microorganisms. The filamentous granules exhibited low porosity and fast settling velocity, and were more compact even than bacteria granules. It was hypothesized that the elevated pH in the later period might be a possible reason for the compact growth of filamentous granules. However, the bacteria granules showed the high bioactivity in terms of specific oxygen utilizing rate, and comprised of a wider diversity of compounds based on the thermogravimetric evaluation. The findings in this study demonstrated that filamentous microbes could form compact granular structure, which may encourage the utilization of filamentous microorganisms rather than the inhibition of their growth, as the latter is frequently used for sludge bulking control.
文摘The granulation process, physic-chemical properties, pollution removal ability and bacterial com- munities of aerobic granules with different feed-waste- water (synthetic wastewater, R1; swine wastewater, R2), and the change trend of some parameters of two types of granules in long-term operated reactors treating swine wastewater were investigated in this experiment. The result indicated that aerobic granulation with the synthetic wastewater had a faster rate compared with swine waste- water and that full granulation in R 1 and R2 was reached on the 30th day and 39th day, respectively. However, although the feed wastewater also had an obvious effect on the biomass fraction and extracellular polymeric sub- stances of the aerobic granules during the granulation process, these properties remained at a similar level after long-term operation. Moreover, a similar increasing trend could also be observed in terms of the nitrogen removal efficiencies of the aerobic granules in both reactors, and the average specific removal rates of the organics and ammonia nitrogen at the steady-state stage were 35.33mg.g^-1 VSS and 51.46mg.g^-1 VSS for R1, and 35.47mg.g^-1 VSS and 51.72mg.g^-1 VSS for R2, respectively. In addition, a shift in the bacterial diversity occurred in the granulation process, whereas bacterial communities in the aerobic granular reactor were not affected by the seed granules after long-term operation.
基金supported by the Natural Science Foundation of Heilongjiang Province (No. E201461)the National Natural Science Foundation of China (No. 51408200)
文摘In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16 s rDNA sequence and denaturing gradient gel electrophoresis(DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index(SVI) value of 20 m L/g, high extracellular polymeric substance(EPS) content of 183.3 mg/L, high NH4+-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules.
基金supported by the National Key Technologies R&D Program of China during the Eleventh Five-year Plan Period (No. 2009BAC57B01)the State Key Laboratory of Urban Water Resource and Environment(HIT) (No. QAK201006)
文摘The effect of COD/N ratio on the granulation process and microbial population succession was investigated.Four identical sequencing batch reactors,R1,R2,R3 and R4,were operated with various initial COD/N ratios ranging from 0/200 to 800/200(m/m).Ethanol was fed as the source of COD.Aerobic granules were successfully cultivated in R2 and R3,operating with the COD/N ratio of 200/200 and 400/200,respectively.Scanning electron microscope observations indicated that short rod-shaped and spherical bacteria were dominant in R2,while granules produced in R3 were surrounded with a large amount of filamentous bacteria.The average specific nitritation rate in R2 and R3 were 0.019 and 0.008 mg N/(mg MLVSS.hr),respectively.Fluorescence in situ hybridization results demonstrated that nitrifying bacteria population was enriched remarkably in R2.It indicated that nitrification ability and nitrifying bacteria population were enriched remarkably at low COD/N ratio.However,no granules were formed in R1 and R4 which might attribute to either limited or excessive extracellular polymeric substances production.This study contributed to a better understanding of the role of COD/N ratio in nitrifying sludge granulation.