Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu...On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.展开更多
With 7-year-old Korla fragrant pear trees as the experimental material, different root-zone irrigation patterns were arranged to study the effects of soil moisture on twig water potential of Korla fragrant pear trees ...With 7-year-old Korla fragrant pear trees as the experimental material, different root-zone irrigation patterns were arranged to study the effects of soil moisture on twig water potential of Korla fragrant pear trees at different growth stages. The results showed that under the condition of regulated deficit irrigation, the diurnal dynamics of twig water potential of Korla fragrant pear trees was V shaped at different growth stages, and the twig water potential of Korla fragrant pear trees reached the minimum during 14:00-16:00. At different growth stages, the twig water potential of Korla fragrant pear trees under drought stress was significantly lower than that of pear trees irrigated normally. Under both drought stress and normal irrigation, the diurnal variation of twig water potential of Korla fragrant pear trees during the flowering period was most gentle, that during the fruit-setting and mature periods showed some ups and downs, and that during the fruit enlargement period was greater. Under the experimental conditions, the twig water potential of Korla fragrant pear trees was positively correlated with soil moisture content, and the functional relationships between them at different growth stages were studied by regression analysis. In addition, the limits of twig water potential and soil moisture content for normal growth of Korla fragrant pear trees at different growth stages were determined.展开更多
We conducted a two-year study of deficit irrigation impact on peach yield and quality in semi-arid northwest China. Over two years, four-year-old peach trees were irrigated at 100, 75, 50 and 25% of peach evapotranspi...We conducted a two-year study of deficit irrigation impact on peach yield and quality in semi-arid northwest China. Over two years, four-year-old peach trees were irrigated at 100, 75, 50 and 25% of peach evapotranspiration (ETc), here, ETc= Coefficient (Kc)×Local reference evapotranspiration (ET0). During the April-July fruit production season we measured root zone soil water depletion, sap flow velocity, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), water use efficiency (WUE=Pn/Tr), fruit quality, and yield under a mobile rain-out shelter. Increased soil water depletion reasonably mirrored decreasing irrigation rates both years, causing progressively greater water stress. Progressive water stress lowered Gs, which in turn translated into lower T as measured by sap flow. However, mild deficit irrigation (75% ETc) constricted T more than Pn. Pn was not different between 100 and 75% ETc treatments in both years, and it decreased only 5-8% in June with higher temperature than that in May with cooler temperature. Concurrently under 75% ETc treatment, was reduced, and WUE was up to 13% higher than that under 100% ETc treatment. While total fruit yield was not different under the two treatments, because 75% ETc treatment had fewer but larger fruit than 100% ETc trees, suggesting mild water stress thinned fruit load. By contrast, sharply decreased T and Pn of the driest treatments (50 and 25% ETo) increased WUE, but less carbon uptake impacted total fruit yield, resulting 13 and 33% lower yield compared to that of 100% ETc treatment. Irrigation rates affected fruit quality, particularly between the 100 and 75% ETc trees. Fewer but larger fruit in the mildly water stressed trees (75% ETc) resulted in more soluble solids and vitamin C, firmer fruit, and improved sugar:acid ratio and fruit color compared to the 100% ETo treatment. Overall, trees deficit irrigated at 75% ETc maintained yield while improving fruit quality and using less water.展开更多
Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming sys...Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming system in China,there is an urgent need to develop effective water-saving technologies.We carried out a field study under two cultivation techniques:(1) the ridge and furrow cultivation model(R);and(2) the conventional flat farming model(F),and three simulated precipitation levels(1,275 mm;2,200 mm;3,125 mm) with two deficit irrigation levels(150 and 75 mm).We demonstrated that under the ridge furrow(R) model,rainfall harvesting planting under 150 mm deficit irrigation combined with 200 mm simulated precipitation can considerably increase net photosynthesis rate(P_(n)),quantum yield of PSII(ΦPSⅡ),electron transport rate(ETR),performance index of photosynthetic PSII(F_(v)/F_(m)′),and transformation energy potential of PSII(F_(v)/F_(o)).In addition,during the jointing,anthesis and grain-filling stages,the grain and biomass yield in the R model are 18.9 and 11.1% higher than those in the flat cultivation model,respectively,primarily due to improved soil water contents.The winter wheat fluorescence parameters were significantly positively associated with the photosynthesis,biomass and wheat production.The result suggests that the R cultivation model with irrigation of 150 mm and simulated precipitation of 200 mm is an effective planting method for enhancing P_(n),biomass,wheat production,and chlorophyll fluorescence parameters in dry-land farming areas.展开更多
The aim of this study is to determine the effects of deficit irrigation on nitrogen consumption,yield,and quality in grafted and ungrafted watermelon.The study was conducted in Cukurova region,Eastern Mediterranean,Tu...The aim of this study is to determine the effects of deficit irrigation on nitrogen consumption,yield,and quality in grafted and ungrafted watermelon.The study was conducted in Cukurova region,Eastern Mediterranean,Turkey,between 2006 and 2008,and employed 3 irrigation rates(full irrigation(l_(100)) with no stress,moderate irrigation(Dl_(70)),and low irrigation(Dl_(50));Dl_(70) and Dl_(50) were considered deficit irrigation) on grafted(CTJ,Crimson Tide+Jumbo) and the ungrafted(CT,Crimson Tide) watermelon.The amount of irrigation water(IR) applied to the study plots were calculated based on cumulative pan evaporation that occurred during the irrigation intervals.Nitrogen consumption was 16%lower in CTJ plants than in CT plants.On the other hand,consumption of nitrogen was 28%higher in Dl_(50) plants than in Dl_(70) plants while it was 23%higher in Dl_(50) plants than in l_(100) plants.By grafting,the average amount of nitrogen content in seeds,pulps and peels for CTJ was 30,43 and 56%more than those of CT,respectively.The yield and the quality were not significantly affected by the deficit irrigation.In this respect,grafting of watermelon gave higher yield,but,it had a slight effect on fruit quality.The highest yield values of 16.90 and 19.32 kg plant^(-1) in 2008 were obtained with l_(100)and in CTJ plants,respectively.However,Dl_(50) treatment could be taken into account for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.Additionally,the yield increased by applying CTJ treatment to the watermelon production.展开更多
Due to the global expansion of irrigated areas and the limited availability of irrigation water, it is necessary to optimize water use in order to maximize crop yields under water deficit conditions. To evaluate the y...Due to the global expansion of irrigated areas and the limited availability of irrigation water, it is necessary to optimize water use in order to maximize crop yields under water deficit conditions. To evaluate the yield response of two processing tomato hybrids (Ercole and Genius) grown under different irrigation treatments, a field trial was conducted during the 2008 growing season in Southern Italy. Three irrigation treatments were used: the restitution of 70% of maximum evapotranspiration (ETc) both under "Deficit Irrigation" (70DI) and "Partial Root-zone Drying" (70PRD) strategies; full irrigated (FI: 100% ETc). The two water deficit irrigation treatments (DI and PRD) showed stomatal conductance values lower than FI treatment and saved a substantial amount of water maintaining reasonable marketable yield. Moreover, PRD strategy showed slightly higher "Water Use Efficiency" (WUE) values than DI. Finally, "yield response factor" (Ky) showed always values less than unity, indicating the possibility to adopt, within certain limited condition, both DI and PRD in field-grown processing tomato cultivated in Southern Italy. In conclusion, in our experimental conditions, deficit irrigation practices seem to be acceptable relatively to processing tomato yield aspects and Ky could be promoted as a useful indicator for irrigation in water deficit conditions.展开更多
Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growi...Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growing season 2006/2007 at a private farm in the Northern part of Jordan Valley (latitude: 32° 50′ N, longitude: 32° 50′ E, altitude: -254 m). Three levels of irrigation treatments (IT) were applied; namely 100%, 75% and 50% of reference evapotranspiration, representing over irrigation (OIT), full irrigation (FIT), and deficit irrigation (DIT), respectively. A drip irrigation using one irrigation source line with drippers spaced 0.5 m having average discharge of 2.3 L/hr at pressure 1.5 bar, was used. Stem water potential (SWP) at 100% over irrigation treatment (OIT) of navel orange trees had less negative value during the irrigation seasons (-1.57 MPa), whereas the highest negative value (-2.17 MPa) occurred at 50% deficit irrigation treatment (DIT).展开更多
In order to evaluate the effect of deficit irrigation at various growth stages on wheat growth and yield, a field experiment was conducted in the 2008-2009 growing season based on the completely randomized block with ...In order to evaluate the effect of deficit irrigation at various growth stages on wheat growth and yield, a field experiment was conducted in the 2008-2009 growing season based on the completely randomized block with four replications at the experimental farm of the College of Agriculture, Shiraz University, Shiraz, Iran, located at Badjgah. Treatments involved 13 irrigation regimes which applied in stem elongation, heading and grain filling growth stages. The highest seed yield (4,333 kg-ha-1) and the lowest ones (1,377 kg'hal) were obtained from T1 (100% field capacity (FC) in all growth stages) and T13 (50% FC in all growth stages), respectively. With limitation in water amount seed yield was diminished, but this trend was not significant at T4 (100%, 100% and 50% FC) and TI 1 (100%, 100% and 75~/0 FC). Stepwise regression results revealed that, seed number per spike had the largest contribution (partial R2 = 0.72) in seed yield variation. Also at TI, T4, and TI 1 treatments (well water treatments) as well as TI3 (sever stress) head number m2 contribute most in seed yield determination (partial R2 = 0.96). It can be concluded that water shortage during the grain filling period and its allocation to the other consecutive crop, can increase crop production in southern regions of Iran.展开更多
Olea europaea, a native plant of the Mediterranean region, is of great interest to agronomists worldwide, owing to its health beneficial properties and tolerance to harsh environmental conditions, along with its econo...Olea europaea, a native plant of the Mediterranean region, is of great interest to agronomists worldwide, owing to its health beneficial properties and tolerance to harsh environmental conditions, along with its economic importance. The productivity and production efficiency of olive is linearly related to both the level of transpiration and the amount of water supplied. Under conditions of limited supply of good quality water for irrigation in Kuwait, deficit irrigation applied at selected phenological stages can maximize economic gains and minimize environmental damage. Moreover, mulching contributes to a significant reduction in water requirements via reducing soil water losses and increasing soil water retention. In this study, the effects of different irrigation levels, a restitution of 50%, 75% or 100% of the estimated evapotranspiration rate (ETc), and the application of mulching on plant growth under the Kuwait environmental conditions were determined to evaluate the possibilities of reducing the amounts of water supplied with irrigation. Various parameters determining the vegetative growth of the trees such as average height, stem girth and number of branches were recorded at three months intervals. Both the irrigation level and mulching were shown to possess a significant impact on growth of Sourani olive cultivar under the Kuwait environmental conditions. Statistical analysis revealed no significant difference in the height of the trees under all the three irrigation treatments with mulch and trees under 100% ETc devoid of mulch. In contrast, a significant difference was exhibited by trees under 100% ETc with mulch and 50% ETc without mulch. Within each irrigation treatment, trees with mulch presented higher values for plant height, stem girth and number of shoots. Thus deficit irrigation of 50% ETc along with organic mulch was shown to enhance vegetative growth close to its maximum potential by conserving the scarce water resources.展开更多
Agricultural sector acts as a major consumer of water which accounts for 70 percent of global freshwater use. Water scarcity acts as an imminent threat to agriculture, there is a need to use those irrigation and manag...Agricultural sector acts as a major consumer of water which accounts for 70 percent of global freshwater use. Water scarcity acts as an imminent threat to agriculture, there is a need to use those irrigation and management practices that could overcome this overwhelming situation of water scarcity. Lab incubation study was designed to evaluate the effect of different moisture levels (50%, 60%, 70%, 80%, 90%, and 100% FC) on nitrogen mineralization rate. Net nitrogen mineralization was shown at 60% and 80% FC levels. Two optimized irrigation levels (I<sub>0.6</sub> and I<sub>0.8</sub>) along with four levels of dairy manure (10, 15, 20, and 25 Mg ha<sup>-1</sup>) were used in a lysimetric trial. Nitrate-nitrogen was measured at four depths (D<sub>1</sub>: 30 cm, D<sub>2</sub>: 60 cm, D<sub>3</sub>: 90 cm, and D<sub>4</sub>: 120 cm). Results showed strong interaction of irrigation and dairy manure at all depths. Mean maximum nitrate-nitrogen concentration was shown under full irrigation at 120 cm soil depth with the application of DM ®25 Mg ha<sup>-1</sup>. Under two levels of deficit irrigation, I0.8 has shown maximum nitrate-nitrogen concentration at 90 cm soil depth with the application of DM25, however, deficit irrigation level I<sub>0.6</sub> restricted nitrate-nitrogen movement up to 60 cm soil depth, and high concentration was found at 30 cm soil depth. We concluded that deficit irrigation practice along with dairy manure resulted in more nitrate-nitrogen in the upper 60 cm layer of soil where it can be more available for the crops.展开更多
Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×...Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×Poncirus Trifoliata L. Osb.). The trees were subjected to two irrigation treatments: (1) sustainable deficit irrigation (SDI) established with water supplied at 60% of the crop evapotranspiration (ETc) and (2) low frequency deficit irrigation (LFDI) irrigated according to the plant water status. In addition, a treatment irrigated at 100% of ETc was included as a control (C). Midday stem-water potential (ψUstem), stomatal conductance (gs), and micrometric trunk diameter fluctuations were measured during the maximum evapotranspirative demand period to evaluate the plant-water status, and establish the main relationships among them. The seasonal pattern of the studied variables had a behavior consistent with the contributions made by the volumes of applied irrigation water. Especially significant close relationships of ψstem with gs, and with the maximum daily shrinkage (MDS) were found. The lowest ψstem and gs values were registered in the treatments with lowest irrigations levels (SDI and LFDI), being the MDS was significative higher than in the C treatment. The LFDI showed an oscillating behavior in these parameters, which was on line with the supplied irrigation restrictions cycles. Thus, according to the results of the present experiment the physiological stress indexes based in MDS or ψstem allow establishing different irrigation restriction cycles, encouraging important water saving without significant impact on yield and the fruit quality parameters.展开更多
Due to the over use of available water resources, it has become very important to define appropriate strategies for planning and management of irrigated farmland. In this paper, Beijing-Tianjin-Hebei (Jing-Jin-Ji) reg...Due to the over use of available water resources, it has become very important to define appropriate strategies for planning and management of irrigated farmland. In this paper, Beijing-Tianjin-Hebei (Jing-Jin-Ji) region was chosen as the case study area for its special political and economic status and its severe water problem. To achieve effective planning, the information about crop water requirements, irrigation withdrawals, soil types and climatic conditions were obtained in the study area. In the meantime, a GIS method was adopted, which extends the capabilities of the crop models to a regional level. The main objectives of the study are: 1) to estimate the spatial distribution of the evapotranspiration of spring maize; 2) to estimate climatic water deficit; 3) to estimate the yield reduction of spring maize under different rainfed and irrigated conditions. Based on the water deficit analysis, recommended supplemental irrigation schedule was developed using CropWat model. Compared to the rainfed control, the two or three times of supplemental water irrigated to spring maize at the right time reduced the loss of yield, under different scenarios.展开更多
This study was conducted to evaluate the yield, water use efficiency and physiologic characteristics of “Tommy Atkins” mango under partial rootzone drying. The experiment was carried out in an orchard of mango in th...This study was conducted to evaluate the yield, water use efficiency and physiologic characteristics of “Tommy Atkins” mango under partial rootzone drying. The experiment was carried out in an orchard of mango in the irrigated perimeter of Ceraíma, BA. Five treatments and six repetitions were used with one tree per experimental plot: 01—Full Irrigation, 100% of ETc, 02—100% of ETc with frequency of alternance (FA) of 15 days, 03—80% ETc with FA of 15 days, 04—60% of ETc with FA of 15 days, 05—40% ETc with FA of 15 days. The treatments were conductedfrom the beginning of flowering to the harvest of mango in an orchard irrigated by drip. There was no significant reduction in productivity of “Tommy Atkins” mango under PRD up to 40% of ETc and PRD with 40% ETc resulted in greater water use efficiency. There was no significant difference among the averages of photosynthetically active radiation, Qleaf;leaf temperature, Tl;internal CO2 concentration, Ci;transpiration, E;stomatal conductance, gs;photosynthesis, A;carboxylation efficiency, A/Ci;quantum efficiency of photosynthesis, A/Qleaf and instantaneous water use efficiency, A/E between full irrigation and PRD with different water depth. The increase in leaf temperature causes reduction in A/Qleaf and A/E, however, it increases the transpiration. Increased gs results in higher rates of E, A and A/Ci. The use of the PRD with 40% of ETc causes no interference in gas exchange, maintains the yield and increases water use efficiency in “Tommy Atkins” mango tree.展开更多
Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such...Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such method,alternate partial root-zone irrigation(APRI),has been practiced worldwide,but there is limited information on the performance of different irrigation regimes and nitrogen(N)rates under APRI.The objectives of this study were to investigate the effects of varying irrigation regimes and N rates on shoot growth,grain yield and WUE of maize(Zea mays L.)grown under APRI in the Hexi Corridor area of Northwest China in 2014 and 2015.The three N rates were 100,200 and 300 kg N ha–1,designated N1,N2 and N3,respectively.The three irrigation regimes of 45–50%,60–65%and 75–80%field capacity(FC)throughout the maize growing season,designated W1,W2 and W3,respectively,were applied in combination with each N rate.The results showed that W2 and W3 significantly increased the plant height,stem diameter,crop growth rate,chlorophyll SPAD value,net photosynthetic rate(Pn),biomass,grain yield,ears per ha,kernels per cob,1000-kernel weight,harvest index,evapotranspiration and leaf area index(LAI)compared to W1 at each N rate.The N2 and N3 treatments increased those parameters compared to N1 in each irrigation treatment.Increasing the N rate from the N2 to N3 resulted in increased biomass and grain yield under W3 while it had no impact on those under the W1 and W2 treatments.The W3 N3 and W2 N2 and W2 N3 treatments achieved the greatest and the second-greatest biomass and grain yield,respectively.Increasing the N rate significantly enhanced the maximum LAI(LAI at the silking stage)and Pn under W3,suggesting that the interaction of irrigation and fertilizer N management can effectively improve leaf growth and development,and consequently provide high biomass and grain yield of maize.The W2 N2,W2 N3 and W3 N3 treatments attained the greatest WUE among all the treatments.Thus,either 60–65%FC coupled with 200–300 kg N ha–1 or 75–80%FC coupled with 300 kg N ha–1 is proposed as a better pattern of irrigation and nitrogen application with positive regulative effects on grain yield and WUE of maize under APRI in the Hexi Corridor area of Northwest China and other regions with similar environments.These results can provide a basis for indepth understanding of the mechanisms of grain yield and WUE to supply levels of water and nitrogen.展开更多
Camelina(Camelina sativa)has emerged as a potential biofuel crop globally with its suitability even as a jet fuel source with 75–80%less greenhouse gas emissions compared to common petroleum fuels.The crop has origin...Camelina(Camelina sativa)has emerged as a potential biofuel crop globally with its suitability even as a jet fuel source with 75–80%less greenhouse gas emissions compared to common petroleum fuels.The crop has originated from Mediterranean region and belongs to Brassicaceae family.DIBER,DRDO has made initial and pioneer efforts in successful introduction of this crop to India and its agro-technology standardization.Being a short duration crop with lesser input requirement,it fits well in the cropping pattern of hilly states of Indian Himalaya.These areas experience fallow land due to shortage of irrigation water for growing other crops.The present study revealed that irrigation at flowering stage is more beneficial.Irrigation at this stage(if only one irrigation is available)exhibited grain yield of 1.004 kg·m^(-2)which was 21 and 80%higher over pod setting and rosette stage irrigation,respectively.The maximum seed yield was observed under treatment where irrigation was provided at all three crop growth stages(2.044 kg·m^(-2)).It was 50%higher over T6 treatment(where two irrigations were given at rosette and flowering stage)and 104%higher over T3(where only one irrigation was given at flowering stage).展开更多
To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irr...To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 〈100 mm, 100–140 mm, and 〉140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.展开更多
Field studies were conducted on a sandy soil during autumn of 2010 and 2011 in an arid region of Tunisia to investigate the effects of nitrogen and irrigation regimes with saline water on yield and water productivity ...Field studies were conducted on a sandy soil during autumn of 2010 and 2011 in an arid region of Tunisia to investigate the effects of nitrogen and irrigation regimes with saline water on yield and water productivity (WP) of potato (Solanum tuberosum L. cv. Spunta) and soil salinity. For the two years, irrigation treatments consisted in water replacements of cumulated crop evapotranspiration (ETc) at levels of 100% (I100, full irrigation), 60% (I60) and 30% (I30), when the readily available water in I100 treatment was depleted, while the nitrogen treatments (N) were 0, 100, 200, and 300 kg/ha (No, N100, N200, and N300). Results showed that soil salinity values remained lower than those of electrical conductivity of irrigation water (ECiw) and were the lowest under treatment I100 and the highest with I30 treatment. Relatively low ECe values were also observed under I60 treatment. The highest potato yields for the two years were obtained with I100 treatment. Compared to I100, significant reductions in potato yields were observed under I60 and I30 deficit irrigation treatments resulting from a reduction in tubers number/m2 and tuber weight. The water productivity (WP) was found to significantly vary among treatments, where the highest and the lowest values were observed for I30 and I100 treatments, respectively. Potato yield and WP increased with an increase in nitrogen rates. The rate of 300 kg N/ha was seen to give good yield and higher WP of potato under full (I100) and deficit (I60) irrigation treatments. However, application of N adversely affected potato yield and WP, when N level applied above 200 kg N/ha at I30. The WP was improved by N supply, but its effect decreased as the irrigation level increased. The IWP at I100, which produced the highest potato yield, was 8.5 and 9.9 kg/m3 with N300 but this increased to 11.9 and 15.6 kg/m3 at I30 with N200, in 2010 and 2011, respectively. These results suggested that potato in arid region could be cultivated with acceptable yields while saving irrigation water and reducing nitrogen supply but it was essential to exploit the interaction effect between these two parameters to maximize resource use efficiency.展开更多
In Tunisia (36.5oN, 10.2oE, Alt.10 m), rainfall is the major factor govering olive production. Annual and seasonal falls are variable following years and regions, making yields of olive trees fluctuating consistently....In Tunisia (36.5oN, 10.2oE, Alt.10 m), rainfall is the major factor govering olive production. Annual and seasonal falls are variable following years and regions, making yields of olive trees fluctuating consistently. Irrigation was applied since the 70th in the intensive olive orchards to improve and stabilize olive production. This study aimed to determine the crop water needs of olive orchards and the rainfall frequencies at which they are covered following age and site of olive production. For this purpose, the rainfall distribution functions were established for different cities of Tunisia (Tunis, Bizerte, Béja, Nabeul, Sidi Bouzid, Gabes and Sousse). For all sites and growing periods, the reference evapotranspiration (ET0) was computed by using several methods. Their performance against the PM-ET0 (Penman-Monteith) estimates was evaluated graphically and statistically for a better adaptation them to the existing environmental conditions, particularly when data are missing to compute ET0-PM. Results show that ET0 estimates strongly correlate with ET0-PM with r values of up to 0.88. Particularly, the methods of Turc and Ivanov appropriately predict the ET0-PM in all climatic regions of Tunisia, constituing an appropriate alternative for determining ET0 when data are missing to compute ET0-PM. However, although the Turc method performs well with all climatic zones of Tunisia, the Ivanov method appears to be more appropriate to the northern areas (Béja and Bizerte), though a poorer agreement was found when using the Eagleman method. Estimates of ET0 by using the Hargreave-Samani (HS) formula for the east-southern area (Gabes, arid climate) show satisfactory agreement with ET0-PM estimates. It appears also that at a given site, the most appropriate method for ET0 estimation at annual scale may be different from that giving the best value of ET0 when considering the growing stages of the olive tree, for example, the method of Turc, although it was appropriate when estimating the annual ET0 value for Sousse, it wasn’t adequate at seasonal scale. In opposite, although the method of BC is suitable for stages 1, 2, 4 and 5 at Sousse, the appropriate method for the overall cycle is that of Turc. This indicates that there is no weather-based evapotranspiration equation that can be expected to predict evapotranspiration perfectly under every climatic situation due to simplification in formulation and errors in data measurement. However, we can say that when data are missing, ET0 can be estimated with a specific formula;that of Turc can be appropriately used for Tunis, Sidi Bouzid, Sousse and Béja at annual scale despite of their appartenance to different climatic regions, while the method of Ivanov is quite valuable for Bizerte and Nabeul. Results show also that values of P-ETc recorded during the irrigation period are negative even for young plantations, with lowest and highest deficits observed at Béja and Gabes cities, respectively. The driest period is that of July-August for all sites with F values exceeding 0.9 in most cases. Only 10% of water needs are supplied by rainfall during this period of fruit development. Therefore, irrigation is needed all time for adult trees even at the rainiest locations. For young plantations, irrigation becomes necessary beginning from the second period of tree development, i.e. April-June for Bizerte, Béja, Nabeul and Tunis and since the early spring period for both young and old plants for Gabes and Sidi-Bouzid. It appears from this analyze based on the seasonal rainfall frequencies and water needs computed with the PM-method, that there is a need for irrigating olive plantations aging more than 5 years in most case studies and especially when olive is cultivated in the western areas of Tunisia. Results indicate also that the use of no adequate method to estimate ET0 allowed overestimating or underestimating of irrigation water needs. So it is desirable to have for Tunisia a method that estimates ET consistently well and future research is needed to reconcile which should be the standard method of calculating the change in the crop coefficient over time. However, despite a quite good performance of the PM-equation in most applications, particularly when it is used for irrigation scheduling purposes, some problems may appear because of lack of local information on Kc-values and determination of the effective rainfall. Additional research is needed on developing crop coefficients that use the Penman-Monteith equation when calculating ET. In conclusion we can say that on the basis of the results produced, we can decide for each region and growing period if complementary irrigation is needed or not. Indicative amounts are given for each case study.展开更多
The current study was carried out at Agricultural College, University of Baghdad in the vegetable farm, Department of Horticulture during 2013 spring growing season. Yield response to irrigation of different crops is ...The current study was carried out at Agricultural College, University of Baghdad in the vegetable farm, Department of Horticulture during 2013 spring growing season. Yield response to irrigation of different crops is of major importance in production planning where water resources are limited. This study aims to determine the effect of different irrigation treatment (deficit irrigation) and potassium humate fertilizer on yield, content of nitrogen, potassium, and phosphor in tuber of potato and water use efficiency in the Abu-Graib Region, Iraq. Potato was grown under drip irrigation with three treatments: irrigation applied when evaporation 75%, 100% and 125% from pan A, and three potassium humate fertilizers: 0, 1.2 and 2.4 kg/ha with three times additions. The seasonal potato evapotranspiration ranged from 267 mm to 372 mm. The drip irrigation treatment had significant effecting tuber yield of potato recorder 29,530, 27,630 and 24,880 kg/ha for 125%, 100% and 75% from pan A evapotranspiration, respectively. Humus fertilizers addition has the lowest value of ETa 309 mm and maximum value of yield 2,930 kg/ha. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) values increased with increasing humus fertilizers, recording 9.92, 14.52, 8.59, 12.42 and 7.51, 10.70 kg/m3 for potassium humate K3 (2.4 kg/ha), K2 (1.2 kg/ha) and KI (0.0 kg/ha), respectively. Plants irrigated with 125% from class pans A evaporation, produced a significant increase in N, P and K content in tubers recorder 0.96%, 0.58% and 1.52%, respectively. Potassium humus-fertilizer significant differences among K1, K2 and K3 on high of plants reached 41.52, 50.08 and 56.39 cm, respectively, number of stems/plant 2.69, 3.22 and 3.78, respectively, leaves area index recorder 2.80, 3.35 and 3.73.展开更多
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
文摘On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.
文摘With 7-year-old Korla fragrant pear trees as the experimental material, different root-zone irrigation patterns were arranged to study the effects of soil moisture on twig water potential of Korla fragrant pear trees at different growth stages. The results showed that under the condition of regulated deficit irrigation, the diurnal dynamics of twig water potential of Korla fragrant pear trees was V shaped at different growth stages, and the twig water potential of Korla fragrant pear trees reached the minimum during 14:00-16:00. At different growth stages, the twig water potential of Korla fragrant pear trees under drought stress was significantly lower than that of pear trees irrigated normally. Under both drought stress and normal irrigation, the diurnal variation of twig water potential of Korla fragrant pear trees during the flowering period was most gentle, that during the fruit-setting and mature periods showed some ups and downs, and that during the fruit enlargement period was greater. Under the experimental conditions, the twig water potential of Korla fragrant pear trees was positively correlated with soil moisture content, and the functional relationships between them at different growth stages were studied by regression analysis. In addition, the limits of twig water potential and soil moisture content for normal growth of Korla fragrant pear trees at different growth stages were determined.
基金the financial support from the National High-Tech R&D Program,China(863 Program,2011AA100504)the National Natural Science Foundation of China(51579211)+3 种基金the Key Research Project of Universities in Henan Province,China(16A416005)the 111 Project of the Chinese Education Ministry(B12007)the Initial Fund for Doctoral Reserch of Henan University of Science and Technology,China(13480016)the China Scholarship Council and USDA Agricultural Experiment Station CRIS Project(01129)
文摘We conducted a two-year study of deficit irrigation impact on peach yield and quality in semi-arid northwest China. Over two years, four-year-old peach trees were irrigated at 100, 75, 50 and 25% of peach evapotranspiration (ETc), here, ETc= Coefficient (Kc)×Local reference evapotranspiration (ET0). During the April-July fruit production season we measured root zone soil water depletion, sap flow velocity, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), water use efficiency (WUE=Pn/Tr), fruit quality, and yield under a mobile rain-out shelter. Increased soil water depletion reasonably mirrored decreasing irrigation rates both years, causing progressively greater water stress. Progressive water stress lowered Gs, which in turn translated into lower T as measured by sap flow. However, mild deficit irrigation (75% ETc) constricted T more than Pn. Pn was not different between 100 and 75% ETc treatments in both years, and it decreased only 5-8% in June with higher temperature than that in May with cooler temperature. Concurrently under 75% ETc treatment, was reduced, and WUE was up to 13% higher than that under 100% ETc treatment. While total fruit yield was not different under the two treatments, because 75% ETc treatment had fewer but larger fruit than 100% ETc trees, suggesting mild water stress thinned fruit load. By contrast, sharply decreased T and Pn of the driest treatments (50 and 25% ETo) increased WUE, but less carbon uptake impacted total fruit yield, resulting 13 and 33% lower yield compared to that of 100% ETc treatment. Irrigation rates affected fruit quality, particularly between the 100 and 75% ETc trees. Fewer but larger fruit in the mildly water stressed trees (75% ETc) resulted in more soluble solids and vitamin C, firmer fruit, and improved sugar:acid ratio and fruit color compared to the 100% ETo treatment. Overall, trees deficit irrigated at 75% ETc maintained yield while improving fruit quality and using less water.
基金supported by the National Key Technologies R&D Program of China (2012BAD09B03)the China Postdoctoral Science Foundation Project Funding (2018M642614)+2 种基金the Special Fund for Agro-scientific Research, China (201303104)the Natural Science Foundation of Shandong Province, China (ZR2017ZB0422)the “Taishan Scholar” Project of Shandong Province, China。
文摘Deficit irrigation is critical to global food production,particularly in arid and semi-arid regions with low precipitation.Given water shortage has threatened agricultural sustainability under the dry-land farming system in China,there is an urgent need to develop effective water-saving technologies.We carried out a field study under two cultivation techniques:(1) the ridge and furrow cultivation model(R);and(2) the conventional flat farming model(F),and three simulated precipitation levels(1,275 mm;2,200 mm;3,125 mm) with two deficit irrigation levels(150 and 75 mm).We demonstrated that under the ridge furrow(R) model,rainfall harvesting planting under 150 mm deficit irrigation combined with 200 mm simulated precipitation can considerably increase net photosynthesis rate(P_(n)),quantum yield of PSII(ΦPSⅡ),electron transport rate(ETR),performance index of photosynthetic PSII(F_(v)/F_(m)′),and transformation energy potential of PSII(F_(v)/F_(o)).In addition,during the jointing,anthesis and grain-filling stages,the grain and biomass yield in the R model are 18.9 and 11.1% higher than those in the flat cultivation model,respectively,primarily due to improved soil water contents.The winter wheat fluorescence parameters were significantly positively associated with the photosynthesis,biomass and wheat production.The result suggests that the R cultivation model with irrigation of 150 mm and simulated precipitation of 200 mm is an effective planting method for enhancing P_(n),biomass,wheat production,and chlorophyll fluorescence parameters in dry-land farming areas.
基金the University of cukurova,Turkey,for providing funding through the Scientific Research Projects of Qukurova University(ZF2006D16 and ZF2008BAP1)
文摘The aim of this study is to determine the effects of deficit irrigation on nitrogen consumption,yield,and quality in grafted and ungrafted watermelon.The study was conducted in Cukurova region,Eastern Mediterranean,Turkey,between 2006 and 2008,and employed 3 irrigation rates(full irrigation(l_(100)) with no stress,moderate irrigation(Dl_(70)),and low irrigation(Dl_(50));Dl_(70) and Dl_(50) were considered deficit irrigation) on grafted(CTJ,Crimson Tide+Jumbo) and the ungrafted(CT,Crimson Tide) watermelon.The amount of irrigation water(IR) applied to the study plots were calculated based on cumulative pan evaporation that occurred during the irrigation intervals.Nitrogen consumption was 16%lower in CTJ plants than in CT plants.On the other hand,consumption of nitrogen was 28%higher in Dl_(50) plants than in Dl_(70) plants while it was 23%higher in Dl_(50) plants than in l_(100) plants.By grafting,the average amount of nitrogen content in seeds,pulps and peels for CTJ was 30,43 and 56%more than those of CT,respectively.The yield and the quality were not significantly affected by the deficit irrigation.In this respect,grafting of watermelon gave higher yield,but,it had a slight effect on fruit quality.The highest yield values of 16.90 and 19.32 kg plant^(-1) in 2008 were obtained with l_(100)and in CTJ plants,respectively.However,Dl_(50) treatment could be taken into account for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.Additionally,the yield increased by applying CTJ treatment to the watermelon production.
文摘Due to the global expansion of irrigated areas and the limited availability of irrigation water, it is necessary to optimize water use in order to maximize crop yields under water deficit conditions. To evaluate the yield response of two processing tomato hybrids (Ercole and Genius) grown under different irrigation treatments, a field trial was conducted during the 2008 growing season in Southern Italy. Three irrigation treatments were used: the restitution of 70% of maximum evapotranspiration (ETc) both under "Deficit Irrigation" (70DI) and "Partial Root-zone Drying" (70PRD) strategies; full irrigated (FI: 100% ETc). The two water deficit irrigation treatments (DI and PRD) showed stomatal conductance values lower than FI treatment and saved a substantial amount of water maintaining reasonable marketable yield. Moreover, PRD strategy showed slightly higher "Water Use Efficiency" (WUE) values than DI. Finally, "yield response factor" (Ky) showed always values less than unity, indicating the possibility to adopt, within certain limited condition, both DI and PRD in field-grown processing tomato cultivated in Southern Italy. In conclusion, in our experimental conditions, deficit irrigation practices seem to be acceptable relatively to processing tomato yield aspects and Ky could be promoted as a useful indicator for irrigation in water deficit conditions.
文摘Research was conducted to find the relationship between deficit irrigation treatments (DIT) and stems water potential. The study was conducted on 14 years old navel orange trees grafted on sour oranges for the growing season 2006/2007 at a private farm in the Northern part of Jordan Valley (latitude: 32° 50′ N, longitude: 32° 50′ E, altitude: -254 m). Three levels of irrigation treatments (IT) were applied; namely 100%, 75% and 50% of reference evapotranspiration, representing over irrigation (OIT), full irrigation (FIT), and deficit irrigation (DIT), respectively. A drip irrigation using one irrigation source line with drippers spaced 0.5 m having average discharge of 2.3 L/hr at pressure 1.5 bar, was used. Stem water potential (SWP) at 100% over irrigation treatment (OIT) of navel orange trees had less negative value during the irrigation seasons (-1.57 MPa), whereas the highest negative value (-2.17 MPa) occurred at 50% deficit irrigation treatment (DIT).
文摘In order to evaluate the effect of deficit irrigation at various growth stages on wheat growth and yield, a field experiment was conducted in the 2008-2009 growing season based on the completely randomized block with four replications at the experimental farm of the College of Agriculture, Shiraz University, Shiraz, Iran, located at Badjgah. Treatments involved 13 irrigation regimes which applied in stem elongation, heading and grain filling growth stages. The highest seed yield (4,333 kg-ha-1) and the lowest ones (1,377 kg'hal) were obtained from T1 (100% field capacity (FC) in all growth stages) and T13 (50% FC in all growth stages), respectively. With limitation in water amount seed yield was diminished, but this trend was not significant at T4 (100%, 100% and 50% FC) and TI 1 (100%, 100% and 75~/0 FC). Stepwise regression results revealed that, seed number per spike had the largest contribution (partial R2 = 0.72) in seed yield variation. Also at TI, T4, and TI 1 treatments (well water treatments) as well as TI3 (sever stress) head number m2 contribute most in seed yield determination (partial R2 = 0.96). It can be concluded that water shortage during the grain filling period and its allocation to the other consecutive crop, can increase crop production in southern regions of Iran.
文摘Olea europaea, a native plant of the Mediterranean region, is of great interest to agronomists worldwide, owing to its health beneficial properties and tolerance to harsh environmental conditions, along with its economic importance. The productivity and production efficiency of olive is linearly related to both the level of transpiration and the amount of water supplied. Under conditions of limited supply of good quality water for irrigation in Kuwait, deficit irrigation applied at selected phenological stages can maximize economic gains and minimize environmental damage. Moreover, mulching contributes to a significant reduction in water requirements via reducing soil water losses and increasing soil water retention. In this study, the effects of different irrigation levels, a restitution of 50%, 75% or 100% of the estimated evapotranspiration rate (ETc), and the application of mulching on plant growth under the Kuwait environmental conditions were determined to evaluate the possibilities of reducing the amounts of water supplied with irrigation. Various parameters determining the vegetative growth of the trees such as average height, stem girth and number of branches were recorded at three months intervals. Both the irrigation level and mulching were shown to possess a significant impact on growth of Sourani olive cultivar under the Kuwait environmental conditions. Statistical analysis revealed no significant difference in the height of the trees under all the three irrigation treatments with mulch and trees under 100% ETc devoid of mulch. In contrast, a significant difference was exhibited by trees under 100% ETc with mulch and 50% ETc without mulch. Within each irrigation treatment, trees with mulch presented higher values for plant height, stem girth and number of shoots. Thus deficit irrigation of 50% ETc along with organic mulch was shown to enhance vegetative growth close to its maximum potential by conserving the scarce water resources.
文摘Agricultural sector acts as a major consumer of water which accounts for 70 percent of global freshwater use. Water scarcity acts as an imminent threat to agriculture, there is a need to use those irrigation and management practices that could overcome this overwhelming situation of water scarcity. Lab incubation study was designed to evaluate the effect of different moisture levels (50%, 60%, 70%, 80%, 90%, and 100% FC) on nitrogen mineralization rate. Net nitrogen mineralization was shown at 60% and 80% FC levels. Two optimized irrigation levels (I<sub>0.6</sub> and I<sub>0.8</sub>) along with four levels of dairy manure (10, 15, 20, and 25 Mg ha<sup>-1</sup>) were used in a lysimetric trial. Nitrate-nitrogen was measured at four depths (D<sub>1</sub>: 30 cm, D<sub>2</sub>: 60 cm, D<sub>3</sub>: 90 cm, and D<sub>4</sub>: 120 cm). Results showed strong interaction of irrigation and dairy manure at all depths. Mean maximum nitrate-nitrogen concentration was shown under full irrigation at 120 cm soil depth with the application of DM ®25 Mg ha<sup>-1</sup>. Under two levels of deficit irrigation, I0.8 has shown maximum nitrate-nitrogen concentration at 90 cm soil depth with the application of DM25, however, deficit irrigation level I<sub>0.6</sub> restricted nitrate-nitrogen movement up to 60 cm soil depth, and high concentration was found at 30 cm soil depth. We concluded that deficit irrigation practice along with dairy manure resulted in more nitrate-nitrogen in the upper 60 cm layer of soil where it can be more available for the crops.
文摘Different strategies of deficit irrigation based on water stress dynamics were applied in an 11-year old citrus trees (Citrus sinensis L. Osb. cv. Navelina) grafted on carrizo citrange (Citrus sinensis L. Osb.×Poncirus Trifoliata L. Osb.). The trees were subjected to two irrigation treatments: (1) sustainable deficit irrigation (SDI) established with water supplied at 60% of the crop evapotranspiration (ETc) and (2) low frequency deficit irrigation (LFDI) irrigated according to the plant water status. In addition, a treatment irrigated at 100% of ETc was included as a control (C). Midday stem-water potential (ψUstem), stomatal conductance (gs), and micrometric trunk diameter fluctuations were measured during the maximum evapotranspirative demand period to evaluate the plant-water status, and establish the main relationships among them. The seasonal pattern of the studied variables had a behavior consistent with the contributions made by the volumes of applied irrigation water. Especially significant close relationships of ψstem with gs, and with the maximum daily shrinkage (MDS) were found. The lowest ψstem and gs values were registered in the treatments with lowest irrigations levels (SDI and LFDI), being the MDS was significative higher than in the C treatment. The LFDI showed an oscillating behavior in these parameters, which was on line with the supplied irrigation restrictions cycles. Thus, according to the results of the present experiment the physiological stress indexes based in MDS or ψstem allow establishing different irrigation restriction cycles, encouraging important water saving without significant impact on yield and the fruit quality parameters.
基金Under the auspices of the Knowledge Innovation Program of Chinese Academy of Sciences (No. SU210200)
文摘Due to the over use of available water resources, it has become very important to define appropriate strategies for planning and management of irrigated farmland. In this paper, Beijing-Tianjin-Hebei (Jing-Jin-Ji) region was chosen as the case study area for its special political and economic status and its severe water problem. To achieve effective planning, the information about crop water requirements, irrigation withdrawals, soil types and climatic conditions were obtained in the study area. In the meantime, a GIS method was adopted, which extends the capabilities of the crop models to a regional level. The main objectives of the study are: 1) to estimate the spatial distribution of the evapotranspiration of spring maize; 2) to estimate climatic water deficit; 3) to estimate the yield reduction of spring maize under different rainfed and irrigated conditions. Based on the water deficit analysis, recommended supplemental irrigation schedule was developed using CropWat model. Compared to the rainfed control, the two or three times of supplemental water irrigated to spring maize at the right time reduced the loss of yield, under different scenarios.
文摘This study was conducted to evaluate the yield, water use efficiency and physiologic characteristics of “Tommy Atkins” mango under partial rootzone drying. The experiment was carried out in an orchard of mango in the irrigated perimeter of Ceraíma, BA. Five treatments and six repetitions were used with one tree per experimental plot: 01—Full Irrigation, 100% of ETc, 02—100% of ETc with frequency of alternance (FA) of 15 days, 03—80% ETc with FA of 15 days, 04—60% of ETc with FA of 15 days, 05—40% ETc with FA of 15 days. The treatments were conductedfrom the beginning of flowering to the harvest of mango in an orchard irrigated by drip. There was no significant reduction in productivity of “Tommy Atkins” mango under PRD up to 40% of ETc and PRD with 40% ETc resulted in greater water use efficiency. There was no significant difference among the averages of photosynthetically active radiation, Qleaf;leaf temperature, Tl;internal CO2 concentration, Ci;transpiration, E;stomatal conductance, gs;photosynthesis, A;carboxylation efficiency, A/Ci;quantum efficiency of photosynthesis, A/Qleaf and instantaneous water use efficiency, A/E between full irrigation and PRD with different water depth. The increase in leaf temperature causes reduction in A/Qleaf and A/E, however, it increases the transpiration. Increased gs results in higher rates of E, A and A/Ci. The use of the PRD with 40% of ETc causes no interference in gas exchange, maintains the yield and increases water use efficiency in “Tommy Atkins” mango tree.
基金The study was funded by the National Natural Science Foundation of China(51809006 and 51079124).
文摘Faced with the scarcity of water resources and irrational fertilizer use,it is critical to supply plants with water and fertilizer in a coordinated pattern to improve yield with high water use efficiency(WUE).One such method,alternate partial root-zone irrigation(APRI),has been practiced worldwide,but there is limited information on the performance of different irrigation regimes and nitrogen(N)rates under APRI.The objectives of this study were to investigate the effects of varying irrigation regimes and N rates on shoot growth,grain yield and WUE of maize(Zea mays L.)grown under APRI in the Hexi Corridor area of Northwest China in 2014 and 2015.The three N rates were 100,200 and 300 kg N ha–1,designated N1,N2 and N3,respectively.The three irrigation regimes of 45–50%,60–65%and 75–80%field capacity(FC)throughout the maize growing season,designated W1,W2 and W3,respectively,were applied in combination with each N rate.The results showed that W2 and W3 significantly increased the plant height,stem diameter,crop growth rate,chlorophyll SPAD value,net photosynthetic rate(Pn),biomass,grain yield,ears per ha,kernels per cob,1000-kernel weight,harvest index,evapotranspiration and leaf area index(LAI)compared to W1 at each N rate.The N2 and N3 treatments increased those parameters compared to N1 in each irrigation treatment.Increasing the N rate from the N2 to N3 resulted in increased biomass and grain yield under W3 while it had no impact on those under the W1 and W2 treatments.The W3 N3 and W2 N2 and W2 N3 treatments achieved the greatest and the second-greatest biomass and grain yield,respectively.Increasing the N rate significantly enhanced the maximum LAI(LAI at the silking stage)and Pn under W3,suggesting that the interaction of irrigation and fertilizer N management can effectively improve leaf growth and development,and consequently provide high biomass and grain yield of maize.The W2 N2,W2 N3 and W3 N3 treatments attained the greatest WUE among all the treatments.Thus,either 60–65%FC coupled with 200–300 kg N ha–1 or 75–80%FC coupled with 300 kg N ha–1 is proposed as a better pattern of irrigation and nitrogen application with positive regulative effects on grain yield and WUE of maize under APRI in the Hexi Corridor area of Northwest China and other regions with similar environments.These results can provide a basis for indepth understanding of the mechanisms of grain yield and WUE to supply levels of water and nitrogen.
基金This research was funded by the Defence Research&Development Organisation,Ministry of Defence,Govt of India.Contribution of all contributors has been acknowledged.
文摘Camelina(Camelina sativa)has emerged as a potential biofuel crop globally with its suitability even as a jet fuel source with 75–80%less greenhouse gas emissions compared to common petroleum fuels.The crop has originated from Mediterranean region and belongs to Brassicaceae family.DIBER,DRDO has made initial and pioneer efforts in successful introduction of this crop to India and its agro-technology standardization.Being a short duration crop with lesser input requirement,it fits well in the cropping pattern of hilly states of Indian Himalaya.These areas experience fallow land due to shortage of irrigation water for growing other crops.The present study revealed that irrigation at flowering stage is more beneficial.Irrigation at this stage(if only one irrigation is available)exhibited grain yield of 1.004 kg·m^(-2)which was 21 and 80%higher over pod setting and rosette stage irrigation,respectively.The maximum seed yield was observed under treatment where irrigation was provided at all three crop growth stages(2.044 kg·m^(-2)).It was 50%higher over T6 treatment(where two irrigations were given at rosette and flowering stage)and 104%higher over T3(where only one irrigation was given at flowering stage).
基金funded by the Special Fund for Agro-scientific Research in the Public Interest of China (201203031,201303133)the National Natural Science Foundation of China (31071367)
文摘To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 〈100 mm, 100–140 mm, and 〉140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.
文摘Field studies were conducted on a sandy soil during autumn of 2010 and 2011 in an arid region of Tunisia to investigate the effects of nitrogen and irrigation regimes with saline water on yield and water productivity (WP) of potato (Solanum tuberosum L. cv. Spunta) and soil salinity. For the two years, irrigation treatments consisted in water replacements of cumulated crop evapotranspiration (ETc) at levels of 100% (I100, full irrigation), 60% (I60) and 30% (I30), when the readily available water in I100 treatment was depleted, while the nitrogen treatments (N) were 0, 100, 200, and 300 kg/ha (No, N100, N200, and N300). Results showed that soil salinity values remained lower than those of electrical conductivity of irrigation water (ECiw) and were the lowest under treatment I100 and the highest with I30 treatment. Relatively low ECe values were also observed under I60 treatment. The highest potato yields for the two years were obtained with I100 treatment. Compared to I100, significant reductions in potato yields were observed under I60 and I30 deficit irrigation treatments resulting from a reduction in tubers number/m2 and tuber weight. The water productivity (WP) was found to significantly vary among treatments, where the highest and the lowest values were observed for I30 and I100 treatments, respectively. Potato yield and WP increased with an increase in nitrogen rates. The rate of 300 kg N/ha was seen to give good yield and higher WP of potato under full (I100) and deficit (I60) irrigation treatments. However, application of N adversely affected potato yield and WP, when N level applied above 200 kg N/ha at I30. The WP was improved by N supply, but its effect decreased as the irrigation level increased. The IWP at I100, which produced the highest potato yield, was 8.5 and 9.9 kg/m3 with N300 but this increased to 11.9 and 15.6 kg/m3 at I30 with N200, in 2010 and 2011, respectively. These results suggested that potato in arid region could be cultivated with acceptable yields while saving irrigation water and reducing nitrogen supply but it was essential to exploit the interaction effect between these two parameters to maximize resource use efficiency.
文摘In Tunisia (36.5oN, 10.2oE, Alt.10 m), rainfall is the major factor govering olive production. Annual and seasonal falls are variable following years and regions, making yields of olive trees fluctuating consistently. Irrigation was applied since the 70th in the intensive olive orchards to improve and stabilize olive production. This study aimed to determine the crop water needs of olive orchards and the rainfall frequencies at which they are covered following age and site of olive production. For this purpose, the rainfall distribution functions were established for different cities of Tunisia (Tunis, Bizerte, Béja, Nabeul, Sidi Bouzid, Gabes and Sousse). For all sites and growing periods, the reference evapotranspiration (ET0) was computed by using several methods. Their performance against the PM-ET0 (Penman-Monteith) estimates was evaluated graphically and statistically for a better adaptation them to the existing environmental conditions, particularly when data are missing to compute ET0-PM. Results show that ET0 estimates strongly correlate with ET0-PM with r values of up to 0.88. Particularly, the methods of Turc and Ivanov appropriately predict the ET0-PM in all climatic regions of Tunisia, constituing an appropriate alternative for determining ET0 when data are missing to compute ET0-PM. However, although the Turc method performs well with all climatic zones of Tunisia, the Ivanov method appears to be more appropriate to the northern areas (Béja and Bizerte), though a poorer agreement was found when using the Eagleman method. Estimates of ET0 by using the Hargreave-Samani (HS) formula for the east-southern area (Gabes, arid climate) show satisfactory agreement with ET0-PM estimates. It appears also that at a given site, the most appropriate method for ET0 estimation at annual scale may be different from that giving the best value of ET0 when considering the growing stages of the olive tree, for example, the method of Turc, although it was appropriate when estimating the annual ET0 value for Sousse, it wasn’t adequate at seasonal scale. In opposite, although the method of BC is suitable for stages 1, 2, 4 and 5 at Sousse, the appropriate method for the overall cycle is that of Turc. This indicates that there is no weather-based evapotranspiration equation that can be expected to predict evapotranspiration perfectly under every climatic situation due to simplification in formulation and errors in data measurement. However, we can say that when data are missing, ET0 can be estimated with a specific formula;that of Turc can be appropriately used for Tunis, Sidi Bouzid, Sousse and Béja at annual scale despite of their appartenance to different climatic regions, while the method of Ivanov is quite valuable for Bizerte and Nabeul. Results show also that values of P-ETc recorded during the irrigation period are negative even for young plantations, with lowest and highest deficits observed at Béja and Gabes cities, respectively. The driest period is that of July-August for all sites with F values exceeding 0.9 in most cases. Only 10% of water needs are supplied by rainfall during this period of fruit development. Therefore, irrigation is needed all time for adult trees even at the rainiest locations. For young plantations, irrigation becomes necessary beginning from the second period of tree development, i.e. April-June for Bizerte, Béja, Nabeul and Tunis and since the early spring period for both young and old plants for Gabes and Sidi-Bouzid. It appears from this analyze based on the seasonal rainfall frequencies and water needs computed with the PM-method, that there is a need for irrigating olive plantations aging more than 5 years in most case studies and especially when olive is cultivated in the western areas of Tunisia. Results indicate also that the use of no adequate method to estimate ET0 allowed overestimating or underestimating of irrigation water needs. So it is desirable to have for Tunisia a method that estimates ET consistently well and future research is needed to reconcile which should be the standard method of calculating the change in the crop coefficient over time. However, despite a quite good performance of the PM-equation in most applications, particularly when it is used for irrigation scheduling purposes, some problems may appear because of lack of local information on Kc-values and determination of the effective rainfall. Additional research is needed on developing crop coefficients that use the Penman-Monteith equation when calculating ET. In conclusion we can say that on the basis of the results produced, we can decide for each region and growing period if complementary irrigation is needed or not. Indicative amounts are given for each case study.
文摘The current study was carried out at Agricultural College, University of Baghdad in the vegetable farm, Department of Horticulture during 2013 spring growing season. Yield response to irrigation of different crops is of major importance in production planning where water resources are limited. This study aims to determine the effect of different irrigation treatment (deficit irrigation) and potassium humate fertilizer on yield, content of nitrogen, potassium, and phosphor in tuber of potato and water use efficiency in the Abu-Graib Region, Iraq. Potato was grown under drip irrigation with three treatments: irrigation applied when evaporation 75%, 100% and 125% from pan A, and three potassium humate fertilizers: 0, 1.2 and 2.4 kg/ha with three times additions. The seasonal potato evapotranspiration ranged from 267 mm to 372 mm. The drip irrigation treatment had significant effecting tuber yield of potato recorder 29,530, 27,630 and 24,880 kg/ha for 125%, 100% and 75% from pan A evapotranspiration, respectively. Humus fertilizers addition has the lowest value of ETa 309 mm and maximum value of yield 2,930 kg/ha. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) values increased with increasing humus fertilizers, recording 9.92, 14.52, 8.59, 12.42 and 7.51, 10.70 kg/m3 for potassium humate K3 (2.4 kg/ha), K2 (1.2 kg/ha) and KI (0.0 kg/ha), respectively. Plants irrigated with 125% from class pans A evaporation, produced a significant increase in N, P and K content in tubers recorder 0.96%, 0.58% and 1.52%, respectively. Potassium humus-fertilizer significant differences among K1, K2 and K3 on high of plants reached 41.52, 50.08 and 56.39 cm, respectively, number of stems/plant 2.69, 3.22 and 3.78, respectively, leaves area index recorder 2.80, 3.35 and 3.73.