The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects...The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects were also measured. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces and moments acting on the insects. The main results are as following. (1) The turn is mainly a 90° change of heading. It is made in about 10 wingbeats (about 55 ms). It is of interest to note that the number of wingbeats taken to make the turn is approximately the same as and the turning time is only a little different from that of fruitflies measured recently by the same approach, even if the weight of the droneflies is more than 100 times larger than that of the fruitflies. The long axis of body is about 40° from the horizontal during the maneuver. (2) Although the body rotation is mainly about a vertical axis, a relatively large moment around the yaw axis (axis perpendicular to the long axis of body), called as yaw moment, is mainly needed for the turn, because moment of inertial of the body about the yaw axis is much larger than that about the long axis. (3) The yaw moment is mainly pro- duced by changes in wing angles of attack: in a right turn, for example, the dronefly lets its right wing to have a rather large angle of attack in the downstroke (generally larger than 50°) and a small one in the upstroke to start the turn, and lets its left wing to do so to stop the turn, unlike the fruitflies who generate the yaw moment mainly by changes in the stroke plane and stroke amplitude.展开更多
Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes, which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an ap...Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes, which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an appropriate point spread function in a wide field of view. The compensation results mainly depend on the turbu-lence distribution. The atmospheric turbulence at Dome A in the Antarctic is mainly distributed below 15 meters, which is an ideal site for applications of GLAO. The GLAO system has been simulated for the Kunlun Dark Universe Survey Telescope, which will be set up at Dome A, and uses a rotating mirror to generate several laser guide stars and a wavefront sensor with a wide field of view to sequentially measure the wavefronts from different laser guide stars. The system is simulated on a computer and parameters of the system are given, which provide detailed information about the design of a practical GLAO system.展开更多
The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 ...The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.展开更多
We demonstrate a Fe:ZnSe laser gain-switched by a 2.9 m ZnGeP2 optical parametric oscillator under pulse repetition frequency of 1 kHz at liquid nitrogen temperature of 77 K. The maximum output power is 63 m W with pu...We demonstrate a Fe:ZnSe laser gain-switched by a 2.9 m ZnGeP2 optical parametric oscillator under pulse repetition frequency of 1 kHz at liquid nitrogen temperature of 77 K. The maximum output power is 63 m W with pulse duration of 34.4 ns. The wavelength covers 3686.6–4088.6 nm and centers at 3897.7 nm. The output power decreases with increasing the temperature of the crystal in 77–222 K.展开更多
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due...In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability展开更多
This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution...This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.展开更多
We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was ...We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was pumped by a CW single-frequency Nd:YVO4 laser at 1.06μm. The 1.02 W of CW single-frequency signal laser at 1.5 μm was obtained at pump power of 6 W. At the output power of around 0.75 W, the power stability was better than ±l.5% and no mode-hopping was observed in 30 min and frequency stability was better than 8.5 MHz in 1 min. The signal wavelength could be tuned from 1.57 to 1.59 μm by varying the PPLN temperature. The 1.5-μm laser exhibits low noise characteristics, the intensity noise of the laser reaches the shot noise limit (SNL) at an analysis frequency of 4 MHz and the phase noise is less than 1 dB above the SNL at analysis frequencies above 10 MHz.展开更多
A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An ...A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.展开更多
An organic material, namely, ethyl p-dimethylamino benzoate was crystallized for the first time by solution growth technique using pure and mixed solvents. Growth kinetics and morphology changes with solvents were inv...An organic material, namely, ethyl p-dimethylamino benzoate was crystallized for the first time by solution growth technique using pure and mixed solvents. Growth kinetics and morphology changes with solvents were investigated based on solute –solvent interactions of pure and mixed solvents. An appropriate mixed solvent for high quality crystals with well-defined morphology is reported. The absence of solvent molecules and the presence of various functional groups of the grown sample were qualitatively confirmed by FTIR spectroscopic studies. Thermal properties of the grown sample were analyzed by TG and DTA analysis. Mechanical properties of the EDMAB crystal were investigated by micro hardness studies. Moreover, the grown crystal shows high transparency in the visible and near IR regions. The material shows relatively high SHG efficiency than that of KDP.展开更多
Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented an...Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented and the errors of the new pyrometer are analyzed.展开更多
Optically active polyurethane was synthesized by the polyaddition of (2R, 3R)-(+)-diethyl L-tartrate (DET), 4,4'-diphenylmethane diisocyanate (MDI) and polyethylene glycol (PEG) with various molecular weights at 6...Optically active polyurethane was synthesized by the polyaddition of (2R, 3R)-(+)-diethyl L-tartrate (DET), 4,4'-diphenylmethane diisocyanate (MDI) and polyethylene glycol (PEG) with various molecular weights at 60 degrees C in DMSO. The polymers were characterized by specific rotation, DSC and H-1 NMR spectra.展开更多
BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V-20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74...BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V-20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 15304-60pc from the Sun and the age is 900+50Myr. The optical reddening E(B - V) = 0.65 mag, while the infrared reddening is E(J - H) = 0.20 mag. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.展开更多
We report results from the investigation of the nonlinear refractive index and nonlinear absorption coefficient of {(1Z)-[4-(Dimethylamino)phenyl]methylene} 4-nitrobenzocarboxy hydrazone mono-hydrate (DMPM4NBCHM) solu...We report results from the investigation of the nonlinear refractive index and nonlinear absorption coefficient of {(1Z)-[4-(Dimethylamino)phenyl]methylene} 4-nitrobenzocarboxy hydrazone mono-hydrate (DMPM4NBCHM) solution using Z-scan technique with a continuous wave (CW) Argon ion laser. The results show that this type of organic material has a large nonlinear absorption and nonlinear refractive index at 488 nm and 514 nm. The origin of the nonlinear effects was discussed. We demonstrate that the light induced nonlinear refractive index variation, leads to limiting effect. The results indicated that DMPM4NBCHM could be promising candidates for application on nonlinear photonic devices and optical limiters.展开更多
Barium metaborate (BaB 2O 4) exists in two forms the high temperature for m α phase and the low temperature form β phase,with the phase transition poi nt at around 925℃.The low temperature phase (β BBO) is an exce...Barium metaborate (BaB 2O 4) exists in two forms the high temperature for m α phase and the low temperature form β phase,with the phase transition poi nt at around 925℃.The low temperature phase (β BBO) is an excellent NLO cryst al for UV region,while the high temperature one (α BBO) is known as a good bir efringent material.α BBO crystal possesses better transparency in the ultravio let region compared with commonly used YVO 4 and CaCO 3 crystals.However,due t o phase transition problem,it is difficult to grow single α BBO crystals by D CZ method,which restricts its wider application.α BBO crystal usually cracks upon cooling resulted from phase transition to β phase.Therefore,it is difficult to grow β BBO single crystals directly from pure BaB 2O 4 mel t;however,to grow single crystals of α BBO is not easy,either. Our recent experiments showed that one could avoid cracking of α BBO cryst als by Sr 2+ doping.This minute amount of Sr 2+ plays the role of structure stabilizer,which inhibits structural reconstruction. In this way,Sr 2+ d op ed BBO single crystals do not subject to phase transition from 925℃ down to roo m temperature. We have mow successfully grown out α BBO single crystals 30mm in diameter by D CZ method from Sr x Ba 1- x BO 4 melt with Sr concentration 0.3 0 .5%.The ratation rate is 10 15r/min,pulling speed is 1 2mm/h.Preliminary tests revealed that its structure and physic chemical properties were almost identic al to those grown from pure melts.These Sr 2+ doped α BBO crystals are no w being widely used in optical isolators.展开更多
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effecti...The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effective aperture of 3.6 m–4.9 m) and a wide field of view (FOV) (5°). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror’s surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67m×6.05 m) and active Schmidt mirror (5.74m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.展开更多
The goal of developing treatments for central nervous system(CNS)injuries is becoming more attainable with the recent identification of various drugs that can repair damaged axons.These discoveries have stemmed from...The goal of developing treatments for central nervous system(CNS)injuries is becoming more attainable with the recent identification of various drugs that can repair damaged axons.These discoveries have stemmed from screening efforts,large expression datasets and an improved understanding of the cellular and molecular biology underlying axon growth.It will be important to continue searching for new compounds that can induce axon repair.Here we describe how a family of adaptor proteins called 14-3-3s can be targeted using small molecule drugs to enhance axon outgrowth and regeneration.14-3-3s bind to many functionally diverse client proteins to regulate their functions.We highlight the recent discovery of the axon-growth promoting activity of fusicoccin-A,a fungus-derived small molecule that stabilizes 14-3-3 interactions with their client proteins.Here we discuss how fusicoccin-A could serve as a starting point for the development of drugs to induce CNS repair.展开更多
Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a ...Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a severe COVID-19 outbreak and implemented a very strict lockdown that lasted for nearly two months.Using ground-based polarization Light Detection and Ranging(LiDAR),we detected real-time aerosol profile parameters(EC,extinction coefficient;DR,depolarization ratio;AOD,aerosol optical depth),as well as air-quality and meteorological indexes from 1 March to 30 April in 2021 and 2022 to quantify the effects of lockdown on aerosol concentrations.The period in 2022 was divided into three stages:pre-lockdown(1-10 March),strict lockdown(11 March to 10 April),and partial lockdown(11-30 April).The results showed that,during the strict lockdown period,compared with the pre-lockdown period,there were substantial reductions in aerosol parameters(EC and AOD),and this was consistent with the concentrations of the atmospheric pollutants PM_(2.5)(particulate matter with an aerodynamic diameter ≤2.5 μm) and PM_(2.5)(particulate matter with an aerodynamic diameter ≤10 μm),and the Oconcentration increased by 8.3%.During the strict lockdown,the values of EC within0-1 km and AOD decreased by 16.0% and 11.2%,respectively,as compared to the corresponding period in 2021.Lockdown reduced the conventional and organized emissions of air pollutants,and it clearly delayed the time of seasonal emissions from agricultural burning;however,it did not decrease the number of farmland fire points.Considering meteorological factors and eliminating the influence of wind-blown dust events,the results showed that reductions from conventional organized emission sources during the strict lockdown contributed to a 30% air-quality improvement and a 22% reduction in near-surface extinction(0-2 km).Aerosols produced by urban epidemic prevention and disinfection can also be identified using the EC.Regarding seasonal sources of agricultural straw burning,the concentrated burning induced by the epidemic led to the occurrence of heavy pollution from increased amounts of atmospheric aerosols,with a contribution rate of 62%.These results indicate that there is great potential to further improve air quality in the local area,and suggest that the comprehensive use of straw accompanied by reasonable planned burning is the best way to achieve this.展开更多
A new dinuclear Tb(Ⅲ) 4-cyanobenzoate complex [Tb2(4-cba)6(phen)2] (4-Hcba = 4-cyanobenzoic acid and phen = 1,10-phenanthroline) 1 has been synthesized by solvothermal reaction in an ethanol/water mixed solut...A new dinuclear Tb(Ⅲ) 4-cyanobenzoate complex [Tb2(4-cba)6(phen)2] (4-Hcba = 4-cyanobenzoic acid and phen = 1,10-phenanthroline) 1 has been synthesized by solvothermal reaction in an ethanol/water mixed solution at 100℃ and structurally characterized by single-crystal X-ray diffraction. Crystallographic data: C72H40N10O12Tb2, Mr=1554.98, triclinic Pi, a = 9.903(3), b = 11.769(8), c = 15.078(8)A, a = 111.42(12), It = 96.37(19), γ = 101-24(14)°, V= 1572(1)A3, Z= 1, Dc = 1.642 g/cm^3, F(000) = 768 μ = 2.305 mm^-1, the final R = 0.0205 and wR = 0.0543 for 5479 reflections with I 〉 2σ(I). Structural analysis shows that 1 displays an isolated dinuclear structure. Two eight-coordinated Tb(Ⅲ) ions are bridged by four 4-cba ligands in the syn-syn bidentate coordination mode, and two other 4-cba ligands chelate these two Tb(Ⅲ) ions. The title complex molecules are connected through π-π stacking interactions to generate a one-dimensional supramolecular chain, The characteristic infrared spectra, luminescent properties and thermogravimetric analyses have also been discussed.展开更多
Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and la...Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and laboratory demonstration performance of an OVC based on liquid crystal polymers (LCPs) at 633 nm and 1520 nm. The OVC can deliver good performance in laboratory tests and achieve a contrast of 10-6 at an angular distance of 3A/D, which can be implemented for imaging young giant exoplanets in combination with extreme adaptive optics.展开更多
We present the theoretical results of the electronic band structure of wurtzite GaN films under biaxial strains in the (11^-22)-plane. The calculations are performed by the k.p perturbation theory approach through u...We present the theoretical results of the electronic band structure of wurtzite GaN films under biaxial strains in the (11^-22)-plane. The calculations are performed by the k.p perturbation theory approach through using the effectivemass Hamiltonian for an arbitrary direction. The results show that the transition energies decrease with the biaxial strains changing from -0.5% to 0.5%. For films of (11^-22)-plane, the strains are expected to be anisotropic in the growth plane. Such anisotropic strains give rise to valence band mixing which results in dramatic change in optical polarisation property. The strain can also result in optical polarisation switching phenomena. Finally, we discuss the applications of these properties to the (1132) plane GaN-based light-emitting diode and lase diode.展开更多
基金supported by the National Natural Science Foundation of China(10732030)the 111 Project(B07009)
文摘The time courses of wing and body kinematics of two free-flying drone-flies, as they performed saccades, were measured using 3D high-speed video, and the morpho- logical parameters of the wings and body of the insects were also measured. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces and moments acting on the insects. The main results are as following. (1) The turn is mainly a 90° change of heading. It is made in about 10 wingbeats (about 55 ms). It is of interest to note that the number of wingbeats taken to make the turn is approximately the same as and the turning time is only a little different from that of fruitflies measured recently by the same approach, even if the weight of the droneflies is more than 100 times larger than that of the fruitflies. The long axis of body is about 40° from the horizontal during the maneuver. (2) Although the body rotation is mainly about a vertical axis, a relatively large moment around the yaw axis (axis perpendicular to the long axis of body), called as yaw moment, is mainly needed for the turn, because moment of inertial of the body about the yaw axis is much larger than that about the long axis. (3) The yaw moment is mainly pro- duced by changes in wing angles of attack: in a right turn, for example, the dronefly lets its right wing to have a rather large angle of attack in the downstroke (generally larger than 50°) and a small one in the upstroke to start the turn, and lets its left wing to do so to stop the turn, unlike the fruitflies who generate the yaw moment mainly by changes in the stroke plane and stroke amplitude.
文摘Ground Layer Adaptive Optics (GLAO) is a recently developed technique extensively applied to ground-based telescopes, which mainly compensates for the wavefront errors induced by ground-layer turbulence to get an appropriate point spread function in a wide field of view. The compensation results mainly depend on the turbu-lence distribution. The atmospheric turbulence at Dome A in the Antarctic is mainly distributed below 15 meters, which is an ideal site for applications of GLAO. The GLAO system has been simulated for the Kunlun Dark Universe Survey Telescope, which will be set up at Dome A, and uses a rotating mirror to generate several laser guide stars and a wavefront sensor with a wide field of view to sequentially measure the wavefronts from different laser guide stars. The system is simulated on a computer and parameters of the system are given, which provide detailed information about the design of a practical GLAO system.
基金The project supported by the National Natural Science Foundation of China(10232010 and 10472008)Ph.D.Student Foundation of Chinese Ministry of Education(20030006022)
文摘The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.
基金Supported by the National Natural Science Foundation of China under Grant No 51572053the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘We demonstrate a Fe:ZnSe laser gain-switched by a 2.9 m ZnGeP2 optical parametric oscillator under pulse repetition frequency of 1 kHz at liquid nitrogen temperature of 77 K. The maximum output power is 63 m W with pulse duration of 34.4 ns. The wavelength covers 3686.6–4088.6 nm and centers at 3897.7 nm. The output power decreases with increasing the temperature of the crystal in 77–222 K.
文摘In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability
基金Project supported by the National Natural Science Foundation of China (Grant No 60178025) and the Key Laboratory of 0ptoelectronics Information Technical Science of Ministry of Education, Institute of Modern 0ptics, Nankai University, China.
文摘This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.
基金supported by the National Natural Science Foundation of China(Grant No.60878003)the Science Fund for Excellent Research Team of the National Natural Science Foundation of China(Grant No.60821004)the National Basic Research Program of China(Grant No.2010CB923101)
文摘We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was pumped by a CW single-frequency Nd:YVO4 laser at 1.06μm. The 1.02 W of CW single-frequency signal laser at 1.5 μm was obtained at pump power of 6 W. At the output power of around 0.75 W, the power stability was better than ±l.5% and no mode-hopping was observed in 30 min and frequency stability was better than 8.5 MHz in 1 min. The signal wavelength could be tuned from 1.57 to 1.59 μm by varying the PPLN temperature. The 1.5-μm laser exhibits low noise characteristics, the intensity noise of the laser reaches the shot noise limit (SNL) at an analysis frequency of 4 MHz and the phase noise is less than 1 dB above the SNL at analysis frequencies above 10 MHz.
基金Supported by the National Natural Science Foundation of China
文摘A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.
文摘An organic material, namely, ethyl p-dimethylamino benzoate was crystallized for the first time by solution growth technique using pure and mixed solvents. Growth kinetics and morphology changes with solvents were investigated based on solute –solvent interactions of pure and mixed solvents. An appropriate mixed solvent for high quality crystals with well-defined morphology is reported. The absence of solvent molecules and the presence of various functional groups of the grown sample were qualitatively confirmed by FTIR spectroscopic studies. Thermal properties of the grown sample were analyzed by TG and DTA analysis. Mechanical properties of the EDMAB crystal were investigated by micro hardness studies. Moreover, the grown crystal shows high transparency in the visible and near IR regions. The material shows relatively high SHG efficiency than that of KDP.
文摘Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented and the errors of the new pyrometer are analyzed.
基金Project 29774039 was supported by the National Natural Science Foundation of China.
文摘Optically active polyurethane was synthesized by the polyaddition of (2R, 3R)-(+)-diethyl L-tartrate (DET), 4,4'-diphenylmethane diisocyanate (MDI) and polyethylene glycol (PEG) with various molecular weights at 60 degrees C in DMSO. The polymers were characterized by specific rotation, DSC and H-1 NMR spectra.
文摘BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V-20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 15304-60pc from the Sun and the age is 900+50Myr. The optical reddening E(B - V) = 0.65 mag, while the infrared reddening is E(J - H) = 0.20 mag. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.
文摘We report results from the investigation of the nonlinear refractive index and nonlinear absorption coefficient of {(1Z)-[4-(Dimethylamino)phenyl]methylene} 4-nitrobenzocarboxy hydrazone mono-hydrate (DMPM4NBCHM) solution using Z-scan technique with a continuous wave (CW) Argon ion laser. The results show that this type of organic material has a large nonlinear absorption and nonlinear refractive index at 488 nm and 514 nm. The origin of the nonlinear effects was discussed. We demonstrate that the light induced nonlinear refractive index variation, leads to limiting effect. The results indicated that DMPM4NBCHM could be promising candidates for application on nonlinear photonic devices and optical limiters.
文摘Barium metaborate (BaB 2O 4) exists in two forms the high temperature for m α phase and the low temperature form β phase,with the phase transition poi nt at around 925℃.The low temperature phase (β BBO) is an excellent NLO cryst al for UV region,while the high temperature one (α BBO) is known as a good bir efringent material.α BBO crystal possesses better transparency in the ultravio let region compared with commonly used YVO 4 and CaCO 3 crystals.However,due t o phase transition problem,it is difficult to grow single α BBO crystals by D CZ method,which restricts its wider application.α BBO crystal usually cracks upon cooling resulted from phase transition to β phase.Therefore,it is difficult to grow β BBO single crystals directly from pure BaB 2O 4 mel t;however,to grow single crystals of α BBO is not easy,either. Our recent experiments showed that one could avoid cracking of α BBO cryst als by Sr 2+ doping.This minute amount of Sr 2+ plays the role of structure stabilizer,which inhibits structural reconstruction. In this way,Sr 2+ d op ed BBO single crystals do not subject to phase transition from 925℃ down to roo m temperature. We have mow successfully grown out α BBO single crystals 30mm in diameter by D CZ method from Sr x Ba 1- x BO 4 melt with Sr concentration 0.3 0 .5%.The ratation rate is 10 15r/min,pulling speed is 1 2mm/h.Preliminary tests revealed that its structure and physic chemical properties were almost identic al to those grown from pure melts.These Sr 2+ doped α BBO crystals are no w being widely used in optical isolators.
文摘The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) is a special reflecting Schmidt telescope. LAMOST’s special design allows both a large aperture (effective aperture of 3.6 m–4.9 m) and a wide field of view (FOV) (5°). It has an innovative active reflecting Schmidt configuration which continuously changes the mirror’s surface that adjusts during the observation process and combines thin deformable mirror active optics with segmented active optics. Its primary mirror (6.67m×6.05 m) and active Schmidt mirror (5.74m×4.40 m) are both segmented, and composed of 37 and 24 hexagonal sub-mirrors respectively. By using a parallel controllable fiber positioning technique, the focal surface of 1.75 m in diameter can accommodate 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST will be the telescope with the highest rate of spectral acquisition. As a national large scientific project, the LAMOST project was formally proposed in 1996, and approved by the Chinese government in 1997. The construction started in 2001, was completed in 2008 and passed the official acceptance in June 2009. The LAMOST pilot survey was started in October 2011 and the spectroscopic survey will launch in September 2012. Up to now, LAMOST has released more than 480 000 spectra of objects. LAMOST will make an important contribution to the study of the large-scale structure of the Universe, structure and evolution of the Galaxy, and cross-identification of multiwaveband properties in celestial objects.
基金funded by the Canadian Institutes for Health Research and the Multiple Sclerosis Society of Canada
文摘The goal of developing treatments for central nervous system(CNS)injuries is becoming more attainable with the recent identification of various drugs that can repair damaged axons.These discoveries have stemmed from screening efforts,large expression datasets and an improved understanding of the cellular and molecular biology underlying axon growth.It will be important to continue searching for new compounds that can induce axon repair.Here we describe how a family of adaptor proteins called 14-3-3s can be targeted using small molecule drugs to enhance axon outgrowth and regeneration.14-3-3s bind to many functionally diverse client proteins to regulate their functions.We highlight the recent discovery of the axon-growth promoting activity of fusicoccin-A,a fungus-derived small molecule that stabilizes 14-3-3 interactions with their client proteins.Here we discuss how fusicoccin-A could serve as a starting point for the development of drugs to induce CNS repair.
基金the Key Research Program of Frontier Sciences,Chinese Academy of Sciences (No. QYZDB-SSW-DQC045)the National Natural Science Foundation of China (No. 41775116)。
文摘Depending on various government policies,COVID-19(Corona Virus Disease-19) lockdowns have had diverse impacts on global aerosol concentrations.In 2022,Changchun a provincial capital city in Northeast China,suffered a severe COVID-19 outbreak and implemented a very strict lockdown that lasted for nearly two months.Using ground-based polarization Light Detection and Ranging(LiDAR),we detected real-time aerosol profile parameters(EC,extinction coefficient;DR,depolarization ratio;AOD,aerosol optical depth),as well as air-quality and meteorological indexes from 1 March to 30 April in 2021 and 2022 to quantify the effects of lockdown on aerosol concentrations.The period in 2022 was divided into three stages:pre-lockdown(1-10 March),strict lockdown(11 March to 10 April),and partial lockdown(11-30 April).The results showed that,during the strict lockdown period,compared with the pre-lockdown period,there were substantial reductions in aerosol parameters(EC and AOD),and this was consistent with the concentrations of the atmospheric pollutants PM_(2.5)(particulate matter with an aerodynamic diameter ≤2.5 μm) and PM_(2.5)(particulate matter with an aerodynamic diameter ≤10 μm),and the Oconcentration increased by 8.3%.During the strict lockdown,the values of EC within0-1 km and AOD decreased by 16.0% and 11.2%,respectively,as compared to the corresponding period in 2021.Lockdown reduced the conventional and organized emissions of air pollutants,and it clearly delayed the time of seasonal emissions from agricultural burning;however,it did not decrease the number of farmland fire points.Considering meteorological factors and eliminating the influence of wind-blown dust events,the results showed that reductions from conventional organized emission sources during the strict lockdown contributed to a 30% air-quality improvement and a 22% reduction in near-surface extinction(0-2 km).Aerosols produced by urban epidemic prevention and disinfection can also be identified using the EC.Regarding seasonal sources of agricultural straw burning,the concentrated burning induced by the epidemic led to the occurrence of heavy pollution from increased amounts of atmospheric aerosols,with a contribution rate of 62%.These results indicate that there is great potential to further improve air quality in the local area,and suggest that the comprehensive use of straw accompanied by reasonable planned burning is the best way to achieve this.
基金the National Natural Science Foundation of China (20671091) Natural Science of Fujian Province (A0420002 and 2005I017)
文摘A new dinuclear Tb(Ⅲ) 4-cyanobenzoate complex [Tb2(4-cba)6(phen)2] (4-Hcba = 4-cyanobenzoic acid and phen = 1,10-phenanthroline) 1 has been synthesized by solvothermal reaction in an ethanol/water mixed solution at 100℃ and structurally characterized by single-crystal X-ray diffraction. Crystallographic data: C72H40N10O12Tb2, Mr=1554.98, triclinic Pi, a = 9.903(3), b = 11.769(8), c = 15.078(8)A, a = 111.42(12), It = 96.37(19), γ = 101-24(14)°, V= 1572(1)A3, Z= 1, Dc = 1.642 g/cm^3, F(000) = 768 μ = 2.305 mm^-1, the final R = 0.0205 and wR = 0.0543 for 5479 reflections with I 〉 2σ(I). Structural analysis shows that 1 displays an isolated dinuclear structure. Two eight-coordinated Tb(Ⅲ) ions are bridged by four 4-cba ligands in the syn-syn bidentate coordination mode, and two other 4-cba ligands chelate these two Tb(Ⅲ) ions. The title complex molecules are connected through π-π stacking interactions to generate a one-dimensional supramolecular chain, The characteristic infrared spectra, luminescent properties and thermogravimetric analyses have also been discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11661161011,11433007,11220101001,11328302 and 11373005)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA04075200)+2 种基金the International Partnership Program of Chinese Academy of Sciences(Grant Nos.114A32KYSB20160018 and 114A32KYSB20160057)the special fund for astronomy of CAS(2015–2016)Part of the work described in this paper was carried out at California State University,Northridge,with support from the Mt.Cuba Astronomical Foundation
文摘Using an optical vortex coronagraph (OVC) is one of the most promising techniques for di- rectly imaging exoplanets because of its small inner working angle and high throughput. This paper presents the design and laboratory demonstration performance of an OVC based on liquid crystal polymers (LCPs) at 633 nm and 1520 nm. The OVC can deliver good performance in laboratory tests and achieve a contrast of 10-6 at an angular distance of 3A/D, which can be implemented for imaging young giant exoplanets in combination with extreme adaptive optics.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2006CB604908 and 2006CB921607)the National Natural Science Foundation of China (Grant Nos. 60625402,60990313 and 60990311)
文摘We present the theoretical results of the electronic band structure of wurtzite GaN films under biaxial strains in the (11^-22)-plane. The calculations are performed by the k.p perturbation theory approach through using the effectivemass Hamiltonian for an arbitrary direction. The results show that the transition energies decrease with the biaxial strains changing from -0.5% to 0.5%. For films of (11^-22)-plane, the strains are expected to be anisotropic in the growth plane. Such anisotropic strains give rise to valence band mixing which results in dramatic change in optical polarisation property. The strain can also result in optical polarisation switching phenomena. Finally, we discuss the applications of these properties to the (1132) plane GaN-based light-emitting diode and lase diode.