To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental r...To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.展开更多
Studies have shown that micro-wedge vortex generators(MVG)can effectively control the flow separation of supersonic boundary layer.In order to improve the flight stability of spinning projectile,the original standard ...Studies have shown that micro-wedge vortex generators(MVG)can effectively control the flow separation of supersonic boundary layer.In order to improve the flight stability of spinning projectile,the original standard 155 mm projectile was taken as an example,and the micro-vanes were mounted at the projectile shoulder to investigate the separation control on the aerodynamic characteristics of projectile.Numerical simulations were performed with the use of DES method for the flow fields of projectiles with and without micro-vanes,and the characteristics of the boundary layer structures and aerodynamic data were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit separation of fluid on projectile surface,and improve the flight stability and firing dispersion of projectile.展开更多
为了控制涡轮叶顶间隙泄漏流以改善叶顶区域的流动状况,提出了机匣周向槽造型方法。以典型跨声速涡轮级(Thermal Turbomachinery and Machine Dynamics,TTM)模型为对象,研究了不同高度的机匣周向槽造型对涡轮叶顶流动结构和气动特性的...为了控制涡轮叶顶间隙泄漏流以改善叶顶区域的流动状况,提出了机匣周向槽造型方法。以典型跨声速涡轮级(Thermal Turbomachinery and Machine Dynamics,TTM)模型为对象,研究了不同高度的机匣周向槽造型对涡轮叶顶流动结构和气动特性的影响。结果表明,引入机匣周向槽造型后,近叶顶涡系结构发生了显著变化,叶顶泄漏涡(TLV)分为前后两部分,TLV-1穿过上通道涡(UPV)并逐渐被消耗,TLV-2则在周向槽之后重新形成并发展至尾缘,导致TLV的强度减弱,尺度减小。此外,由于周向槽的卷吸削弱了马蹄涡压力侧分支(HVP)的强度,加上TLV-1的压制和消耗,UPV更为远离机匣,与TLV的交互作用减弱,其强度减弱,尺度减小。总体而言,随着造型高度增大,叶顶间隙泄漏率逐渐减小,涡轮级总静效率先增大后减小。相比于无周向槽设计,当造型高度为2倍叶顶间隙时,叶顶泄漏率可降低0.15%,涡轮级总静效率可提升0.31%。展开更多
文摘To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.
文摘Studies have shown that micro-wedge vortex generators(MVG)can effectively control the flow separation of supersonic boundary layer.In order to improve the flight stability of spinning projectile,the original standard 155 mm projectile was taken as an example,and the micro-vanes were mounted at the projectile shoulder to investigate the separation control on the aerodynamic characteristics of projectile.Numerical simulations were performed with the use of DES method for the flow fields of projectiles with and without micro-vanes,and the characteristics of the boundary layer structures and aerodynamic data were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit separation of fluid on projectile surface,and improve the flight stability and firing dispersion of projectile.
文摘为了控制涡轮叶顶间隙泄漏流以改善叶顶区域的流动状况,提出了机匣周向槽造型方法。以典型跨声速涡轮级(Thermal Turbomachinery and Machine Dynamics,TTM)模型为对象,研究了不同高度的机匣周向槽造型对涡轮叶顶流动结构和气动特性的影响。结果表明,引入机匣周向槽造型后,近叶顶涡系结构发生了显著变化,叶顶泄漏涡(TLV)分为前后两部分,TLV-1穿过上通道涡(UPV)并逐渐被消耗,TLV-2则在周向槽之后重新形成并发展至尾缘,导致TLV的强度减弱,尺度减小。此外,由于周向槽的卷吸削弱了马蹄涡压力侧分支(HVP)的强度,加上TLV-1的压制和消耗,UPV更为远离机匣,与TLV的交互作用减弱,其强度减弱,尺度减小。总体而言,随着造型高度增大,叶顶间隙泄漏率逐渐减小,涡轮级总静效率先增大后减小。相比于无周向槽设计,当造型高度为2倍叶顶间隙时,叶顶泄漏率可降低0.15%,涡轮级总静效率可提升0.31%。