Spark discharge plasma synthetic jets(SPJs) have been used for the active flow control study on an NACA 0021 straight-wing model in a wind tunnel. The model forces and moments were measured using a six-component sting...Spark discharge plasma synthetic jets(SPJs) have been used for the active flow control study on an NACA 0021 straight-wing model in a wind tunnel. The model forces and moments were measured using a six-component sting balance at a 20 m/s wind speed. The aim was to explore the SPJ's effect on airfoil aerodynamic by examining SPJ generators' position along the chordwise and the jet flow direction about the chord. Near the wing leading edge, two SPJ generators raised the stall angle by 2° and increased the maximum lift coefficient by 9%. The drag coefficient was decreased by 33.1%, and the lift-drag ratio was increased by 104.2% at an angle of attack above 16°. The rolling-moment coefficient was modified by 0.002, and the yawing-moment coefficient was changed by 0.0007 at angles of attack in the range of 0°–16°. The results showed that SPJs can control wing aerodynamic forces at a high angle of attack and moments at a low angle of attack.展开更多
The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspa...The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspace.The conventional aircraft conceptual design process follows a sequential design approach,and there is an artificial separation between the disciplines of aerodynamics and control,neglecting the coupling effects arising from their interaction.As a result,this design process often requires extensive iterations over long periods when applied to high-speed vehicles,and may not be able to effectively achieve the desired design objectives.To enhance the overall performance and design efficiency of high-speed vehicles,this study integrates the concept of Active Control Technology(ACT)from modern aircraft into the philosophy of aerodynamic/control integrated optimization.Two integrated optimization strategies,with differences in coupling granularity,have been developed.Subsequently,these strategies are put into action on a biconical vehicle that operates at Mach 5.The results reveal that the comprehensive performance of the synthesis optimal model derived from the aerodynamic/control integrated optimization strategy is improved by 31.76%and 28.29%respectively compared to the base model under high-speed conditions,demonstrating the feasibility and effectiveness of the method and optimization strategies employed.Moreover,in comparison to the single-stage strategy,the multi-stage strategy takes into deeper consideration the impact of control capacity.As a result,the control performance of the synthesis opti-mal model derived from the multi-stage strategy improves by 13.99%,whereas the single-stage strategy only achieves a 5.79%improvement.This method enables a fruitful interaction between aerodynamic configuration design and control system design,leading to enhanced overall performance and design efficiency.Furthermore,it improves the controllability of high-speed vehicles,mitigating the risk of mission failure resulting from an ineffective control system.展开更多
In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thr...In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thrusters, aerodynamic configuration, the ability to perform micro-vibration analyses, microwave ranging system and mass center trimmer are described.展开更多
文摘Spark discharge plasma synthetic jets(SPJs) have been used for the active flow control study on an NACA 0021 straight-wing model in a wind tunnel. The model forces and moments were measured using a six-component sting balance at a 20 m/s wind speed. The aim was to explore the SPJ's effect on airfoil aerodynamic by examining SPJ generators' position along the chordwise and the jet flow direction about the chord. Near the wing leading edge, two SPJ generators raised the stall angle by 2° and increased the maximum lift coefficient by 9%. The drag coefficient was decreased by 33.1%, and the lift-drag ratio was increased by 104.2% at an angle of attack above 16°. The rolling-moment coefficient was modified by 0.002, and the yawing-moment coefficient was changed by 0.0007 at angles of attack in the range of 0°–16°. The results showed that SPJs can control wing aerodynamic forces at a high angle of attack and moments at a low angle of attack.
基金supported by the National Natural Science Foundation of China(Nos.92371201,52192633)the Natural Science Foundation of Shaanxi Province(No.2022JC-03)Chinese Aeronautical Foundation(No.ASFC-20220019070002)。
文摘The unpowered high-speed vehicle experiences a significant coupling between the disciplines of aerodynamics and control due to its characteristics of high flight speed and extensive maneuverability within large airspace.The conventional aircraft conceptual design process follows a sequential design approach,and there is an artificial separation between the disciplines of aerodynamics and control,neglecting the coupling effects arising from their interaction.As a result,this design process often requires extensive iterations over long periods when applied to high-speed vehicles,and may not be able to effectively achieve the desired design objectives.To enhance the overall performance and design efficiency of high-speed vehicles,this study integrates the concept of Active Control Technology(ACT)from modern aircraft into the philosophy of aerodynamic/control integrated optimization.Two integrated optimization strategies,with differences in coupling granularity,have been developed.Subsequently,these strategies are put into action on a biconical vehicle that operates at Mach 5.The results reveal that the comprehensive performance of the synthesis optimal model derived from the aerodynamic/control integrated optimization strategy is improved by 31.76%and 28.29%respectively compared to the base model under high-speed conditions,demonstrating the feasibility and effectiveness of the method and optimization strategies employed.Moreover,in comparison to the single-stage strategy,the multi-stage strategy takes into deeper consideration the impact of control capacity.As a result,the control performance of the synthesis opti-mal model derived from the multi-stage strategy improves by 13.99%,whereas the single-stage strategy only achieves a 5.79%improvement.This method enables a fruitful interaction between aerodynamic configuration design and control system design,leading to enhanced overall performance and design efficiency.Furthermore,it improves the controllability of high-speed vehicles,mitigating the risk of mission failure resulting from an ineffective control system.
基金support provided by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51121004,41274041,51207033,and 11275055)
文摘In this paper, the technological progress on Chinese gravity exploration satellites is presented. Novel features such as ultra-stable structure, high accurate thermal control, drag-free and attitude control, micro-thrusters, aerodynamic configuration, the ability to perform micro-vibration analyses, microwave ranging system and mass center trimmer are described.