The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an upda...The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.展开更多
Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determ...Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs) based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle.-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as sele, ction of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM) models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfving learning and generalization performance of LS-SVMs.展开更多
In subcritical Reyolds number flow region, the repeatable and determinate asymmetric vortices flow at regular state can be obtained by manually setting mini-perturbation on the nose of a pointed ogive-cylinder model a...In subcritical Reyolds number flow region, the repeatable and determinate asymmetric vortices flow at regular state can be obtained by manually setting mini-perturbation on the nose of a pointed ogive-cylinder model at high angle of attack and zero side slip. Test results of this study involve surface pressure distributions, sectional-side-force distributions and flow visualizations. The analyses of these results revealed a complicated multi-vortices system at regular state inwhich asymmetric twin vortices with inception region and fully developed region, asymmetric triple vortices, four vortices region, five vortices region and Karman-vortex-street-like flow region aredeveloped along the slender body. The correlation between multi-vortices system structures and corresponding sectional-side-force distribution is given. The behaviors of multi-vortices flow struc-ture at the peculiar points of sectional-side-force distributions and characteristics of corresponding pressure distribution are analysed. Finally, a physical model of asymmetric multi-vortices flowstructure in regular state over slender body is developed.展开更多
The influence of nose perturbations on the behaviors of asymmetric vortices over a slender body with a three-caliber ogive nose is studied in this paper. The tests of a nose-disturbed slender body with surface pressur...The influence of nose perturbations on the behaviors of asymmetric vortices over a slender body with a three-caliber ogive nose is studied in this paper. The tests of a nose-disturbed slender body with surface pressure measurement were conducted at a low speed wind tunnel with subcritical Reynolds number of 1×105 at angle of attack α=50°. The experiment results show that the behaviors and structure of asymmetric vortices over the slender body are mainly controlled by manual perturbation on the nose of body as compared with geometrical minute irregularities on the test model from the machining tolerances. The effect of the perturbation axial location on asymmetric vortices is the strongest if its location is near the model apex. There are four sensitive circumferential locations of manual perturbation at which bistable vortices over the slender body are switched by the perturbation. The flowfield near the reattachment line of lee side is more sensitive to the perturbation, because the saddle point to saddle point topological structure in this reattachment flowfield is unstable. Various types of perturbation do not change the perturbation effect on the behaviors of bistable asymmetric vortices.展开更多
A study of leeward vortex structure over chined fuselage and the effects of micro tip perturbation on its vortex flow have been carried out in wind tunnel experiments at Reynolds numbers from 1.26×105 to 5.04...A study of leeward vortex structure over chined fuselage and the effects of micro tip perturbation on its vortex flow have been carried out in wind tunnel experiments at Reynolds numbers from 1.26×105 to 5.04×105 with PIV and pressure measurement techniques.Firstly,the experiment results have proved that micro tip perturbation has no effects on the vortex flow and its aerodynamic characteristics over chined fuselage at high angle of attack,in which there are not any non-deterministic flow behaviors.Secondly,the evolution of leeward vortex structure over chined fuselage along the axis of model can be divided into four flow regimes:linear conical developed regime,decay regime of leeward vortex intensity,asymmetric leeward vortex break down regime and completely break down regime.And a correlation between leeward vortex structure and sectional aerodynamic force was also revealed in the present paper.Thirdly,the experiment results show the behavior of leeward vortex core trajectories and zonal characteristics of leeward vortex structure with angles of attack.Finally,the experiment results of Reynolds number effect on the leeward vortex flow have further confirmed research conclusions from previous studies:the flows over chined fuselage at high angles of attack are insensitive to variation of Reynolds number,and there is a little effect on the secondary boundary layer separation and the suction peak induced by leeward vortex.展开更多
The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. Howe...The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. However in this research field of forebody asymmetric vortices, three problems such as tip perturbation effect, Reynolds number effect and flow instability are less studied and thus not understood completely. So many researches are still working on the issues in recent years. The present paper attempts to provide a review of recent research progress on first two problems. The first problem is mainly concerned with how the vortex flow evolves after tip perturbation; how to solve the problem of repeatability and reproducibility of wind tunnel testing data; how to develop a conception of active flow control technique with tip perturbation based on the study of vortex flow response to tip perturbation. For the second problem one is mainly concerned that how the asymmetric vortices are developed with the increase of Reynolds number; how to classify the vortex flow patterns in different Reynolds number regimes; how to develop an appropriate boundary layer transition technique to simulate flows at high Reynolds number in the convention wind tunnels. Finally, some important ques- tions that deserve answers are proposed in the concluding remarks.展开更多
Responding to a need for experimental data on a standard wind tunnel model at high angles of attack in the supersonic speed range, and in the absence of suitable reference data, a series of tests of two HB-2 standard ...Responding to a need for experimental data on a standard wind tunnel model at high angles of attack in the supersonic speed range, and in the absence of suitable reference data, a series of tests of two HB-2 standard models of different sizes was performed in the T-38 trisonic wind tunnel of Vojnotehnickˇi Institut(VTI), in the Mach number range 1.5–4.0, at angles of attack up to+30°. Tests were performed at relatively high Reynolds numbers of 2.2 millions to 4.5 millions(based on model forebody diameter). Results were compared with available low angle of attack data from other facilities, and, as a good agreement was found, it was assumed that, by implication, the obtained high angle of attack results were valid as well. Therefore, the results can be used as a reference database for the HB-2 model at high angles of attack in the supersonic speed range, which was not available before. The results are presented in comparison with available reference data, but also contain data for some Mach numbers not given in other publications.展开更多
The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations a...The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.展开更多
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due...In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability展开更多
Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is...Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is discussed in this paper,including blowing momentum and circumferential locations of the microblowing hole of 0.5 mm in diameter on nose tip.A new kind of active control technique,named perturbation-combined active control technique,which combines the micro-grain and micro-blowing perturbation,was proposed on the basis of the above.This control technique can not only change the sign of side force of slender body arbitrarily through changing the vortices positions between yaw-left and yaw-right configuration,but also can make the magnitude of side force variable gradually even at bistable state of asymmetric vortex.Finally,the interferential mechanism of the perturbation-combined active control technique has also been concluded from this paper.The tests have been conducted at low speed wind tunnel with subcritical Reynolds number of 1.05×10~5 at angle of attack α=50° in Beihang University,Beijing,China.展开更多
基金The project supported by the National Natural Science Foundation of China(10172017)Aeronautical Science Foundation of China(02A51048)Foundation of National Key Laboratory of Aerodynamic Design and Research(51462020504HK0101)
文摘The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.
文摘Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs) based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle.-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as sele, ction of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM) models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfving learning and generalization performance of LS-SVMs.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10172017)Aeronautical Science Foundation ofChina(02A51048)Foundation of National Key Laboratory ofAerodynamic Design and Research(00JS51.3.2HK01).
文摘In subcritical Reyolds number flow region, the repeatable and determinate asymmetric vortices flow at regular state can be obtained by manually setting mini-perturbation on the nose of a pointed ogive-cylinder model at high angle of attack and zero side slip. Test results of this study involve surface pressure distributions, sectional-side-force distributions and flow visualizations. The analyses of these results revealed a complicated multi-vortices system at regular state inwhich asymmetric twin vortices with inception region and fully developed region, asymmetric triple vortices, four vortices region, five vortices region and Karman-vortex-street-like flow region aredeveloped along the slender body. The correlation between multi-vortices system structures and corresponding sectional-side-force distribution is given. The behaviors of multi-vortices flow struc-ture at the peculiar points of sectional-side-force distributions and characteristics of corresponding pressure distribution are analysed. Finally, a physical model of asymmetric multi-vortices flowstructure in regular state over slender body is developed.
基金The project supported by the National Natural Science Foundation of China (10172017)the Foundation of National Key Laboratory of Aerodynamic Design and Research (00JS51.3.2 HK01)
文摘The influence of nose perturbations on the behaviors of asymmetric vortices over a slender body with a three-caliber ogive nose is studied in this paper. The tests of a nose-disturbed slender body with surface pressure measurement were conducted at a low speed wind tunnel with subcritical Reynolds number of 1×105 at angle of attack α=50°. The experiment results show that the behaviors and structure of asymmetric vortices over the slender body are mainly controlled by manual perturbation on the nose of body as compared with geometrical minute irregularities on the test model from the machining tolerances. The effect of the perturbation axial location on asymmetric vortices is the strongest if its location is near the model apex. There are four sensitive circumferential locations of manual perturbation at which bistable vortices over the slender body are switched by the perturbation. The flowfield near the reattachment line of lee side is more sensitive to the perturbation, because the saddle point to saddle point topological structure in this reattachment flowfield is unstable. Various types of perturbation do not change the perturbation effect on the behaviors of bistable asymmetric vortices.
基金supported by the National Natural Science Foundation of China(Grant No.10432020,10872019)the Youth Fund of National Natural Science Foundation of China(Grant No.10702004)
文摘A study of leeward vortex structure over chined fuselage and the effects of micro tip perturbation on its vortex flow have been carried out in wind tunnel experiments at Reynolds numbers from 1.26×105 to 5.04×105 with PIV and pressure measurement techniques.Firstly,the experiment results have proved that micro tip perturbation has no effects on the vortex flow and its aerodynamic characteristics over chined fuselage at high angle of attack,in which there are not any non-deterministic flow behaviors.Secondly,the evolution of leeward vortex structure over chined fuselage along the axis of model can be divided into four flow regimes:linear conical developed regime,decay regime of leeward vortex intensity,asymmetric leeward vortex break down regime and completely break down regime.And a correlation between leeward vortex structure and sectional aerodynamic force was also revealed in the present paper.Thirdly,the experiment results show the behavior of leeward vortex core trajectories and zonal characteristics of leeward vortex structure with angles of attack.Finally,the experiment results of Reynolds number effect on the leeward vortex flow have further confirmed research conclusions from previous studies:the flows over chined fuselage at high angles of attack are insensitive to variation of Reynolds number,and there is a little effect on the secondary boundary layer separation and the suction peak induced by leeward vortex.
基金the National Natural Science Foundation of China(10432020 and 10702004)Foundation of Pre-research(9140A13020106HK0111)
文摘The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. However in this research field of forebody asymmetric vortices, three problems such as tip perturbation effect, Reynolds number effect and flow instability are less studied and thus not understood completely. So many researches are still working on the issues in recent years. The present paper attempts to provide a review of recent research progress on first two problems. The first problem is mainly concerned with how the vortex flow evolves after tip perturbation; how to solve the problem of repeatability and reproducibility of wind tunnel testing data; how to develop a conception of active flow control technique with tip perturbation based on the study of vortex flow response to tip perturbation. For the second problem one is mainly concerned that how the asymmetric vortices are developed with the increase of Reynolds number; how to classify the vortex flow patterns in different Reynolds number regimes; how to develop an appropriate boundary layer transition technique to simulate flows at high Reynolds number in the convention wind tunnels. Finally, some important ques- tions that deserve answers are proposed in the concluding remarks.
基金supported by the Military Technical Institute(VTI)and Ministry of Education,Science and Technological Development of Serbia(No.TP 36050)
文摘Responding to a need for experimental data on a standard wind tunnel model at high angles of attack in the supersonic speed range, and in the absence of suitable reference data, a series of tests of two HB-2 standard models of different sizes was performed in the T-38 trisonic wind tunnel of Vojnotehnickˇi Institut(VTI), in the Mach number range 1.5–4.0, at angles of attack up to+30°. Tests were performed at relatively high Reynolds numbers of 2.2 millions to 4.5 millions(based on model forebody diameter). Results were compared with available low angle of attack data from other facilities, and, as a good agreement was found, it was assumed that, by implication, the obtained high angle of attack results were valid as well. Therefore, the results can be used as a reference database for the HB-2 model at high angles of attack in the supersonic speed range, which was not available before. The results are presented in comparison with available reference data, but also contain data for some Mach numbers not given in other publications.
基金supported by the National Natural Science Foundation of China (10432020, 10872019 and 10702004)
文摘The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.
文摘In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability
基金supported by the National Natural Science Foundation of China (Grant No. 10872019)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20101102110015),NCET-06-0176
文摘Based on the determinability of asymmetric vortices flow over slender body under changeless round grain at high angle of attack,the effect of microblowing set in special position on the behaviors of asymmetric flow is discussed in this paper,including blowing momentum and circumferential locations of the microblowing hole of 0.5 mm in diameter on nose tip.A new kind of active control technique,named perturbation-combined active control technique,which combines the micro-grain and micro-blowing perturbation,was proposed on the basis of the above.This control technique can not only change the sign of side force of slender body arbitrarily through changing the vortices positions between yaw-left and yaw-right configuration,but also can make the magnitude of side force variable gradually even at bistable state of asymmetric vortex.Finally,the interferential mechanism of the perturbation-combined active control technique has also been concluded from this paper.The tests have been conducted at low speed wind tunnel with subcritical Reynolds number of 1.05×10~5 at angle of attack α=50° in Beihang University,Beijing,China.