To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(d...To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.展开更多
A linear microporous blade tip structure is designed in order to reduce the aerodynamic noise of a wind turbine during operations.Various structures of such a kind are considered and the related aerodynamic noise is d...A linear microporous blade tip structure is designed in order to reduce the aerodynamic noise of a wind turbine during operations.Various structures of such a kind are considered and the related aerodynamic noise is determined in the framework of large vortex simulation and acoustic array test methods.The findings demonstrate that various blade tip designs can enhance the vortex trajectory in the tip region and lessen the pressure differential between the blade’s upper and lower surfaces.In particular,the wind turbine’s maximum linear velocity at the blade tip can be increased by 10%–23%while also effectively reducing the radial and axial aerodynamic noise during operation.A trailing edge microporous structure displays a better noise reduction effect than a leading edge microporous structure,and the maximum sound pressure level is reduced by an average of 1.92%–3.63%.The main factors influencing the wind turbine’s aerodynamic noise are its size and placement of microporous holes.展开更多
This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two c...This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations.展开更多
To discuss the relationship between the periodicity noise and the aerodynamic noise source of a wind turbine, the characteristics of the actual wind turbine were measured by a wind tunnel;moreover, the flow around the...To discuss the relationship between the periodicity noise and the aerodynamic noise source of a wind turbine, the characteristics of the actual wind turbine were measured by a wind tunnel;moreover, the flow around the impeller immersed in the uniform flow was solved by numerical simulation. In the observed wind turbine, when the mainstream velocity was 7.4 m/s or more, the power coefficient reached maximum at tip speed ratio 8. When the mainstream velocity increased in the driving condition of the maximum power point, the aerodynamic noise increased due to the periodicity noise in the vicinity of 1000 Hz and the broadband noise in the high-frequency domain. The noise sources were concentrated at the leading edge and trailing edge on the suction surface side. We experimentally indicated that the pressure fluctuation of the leading edge was the source of the periodicity noise.展开更多
With lower turbulence and less rigorous restrictions on noise levels,offshore wind farms provide favourable conditions for the development of high-tip-speed wind turbines.In this study,the multi-objective optimization...With lower turbulence and less rigorous restrictions on noise levels,offshore wind farms provide favourable conditions for the development of high-tip-speed wind turbines.In this study,the multi-objective optimization is presented for a 5MW wind turbine design and the effects of high tip speed on power output,cost and noise are analysed.In order to improve the convergence and efficiency of optimization,a novel type of gradient-based multi-objective evolutionary algorithm is proposed based on uniform decomposition and differential evolution.Optimization examples of the wind turbines indicate that the new algorithm can obtain uniformly distributed optimal solutions and this algorithm outperforms the conventional evolutionary algorithms in convergence and optimization efficiency.For the 5MW wind turbines designed,increasing the tip speed can greatly reduce the cost of energy(COE).When the tip speed increases from 80m/s to 100m/s,under the same annual energy production,the COE decreases by 3.2%in a class I wind farm and by 5.1%in a class III one,respectively,while the sound pressure level increases by a maximum of 4.4dB with the class III wind farm case.展开更多
Wind turbine blades are prone to failure due to high tip speed,rain,dust and so on.A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed.On the experimental measurement data,...Wind turbine blades are prone to failure due to high tip speed,rain,dust and so on.A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed.On the experimental measurement data,variational mode decomposition filtering and Mel spectrogram drawing are conducted first.The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network.Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients,considering the complexity of the real environment.The surfaces of Wind turbine blades are classified into four types:standard,attachments,polishing,and serrated trailing edge.The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%.In addition to support the differentiation of trained models,utilizing proper score coefficients also permit the screening of unknown types.展开更多
Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with ...Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.展开更多
Aerodynamic noise is the main problem restricting its development nowadays in green energy,ocean engineering and aerospace engineering.In order to limit the aerodynamic noise of an airfoil structure,a method is propos...Aerodynamic noise is the main problem restricting its development nowadays in green energy,ocean engineering and aerospace engineering.In order to limit the aerodynamic noise of an airfoil structure,a method is proposed in this paper by designing low noise airfoils.This method optimized the aerodynamic noise of two-dimensional airfoil,and considered the aerodynamic performance of the airfoil at the same time.Based on Joukowski conformal transformation,airfoil geometry is parameterized firstly.Then,the optimization model taking the lift-to-drag ratio and airfoil self-noise as the design objective,is established to modify the airfoil by active set algorithm until the airfoil can satisfy the design condition.Finally,the noise of the optimized airfoil is verified according to the prediction theory of airfoil noise.Moreover,the relationship between airfoil geometry and noise is analyzed.The results show that the lift-to-drag ratio of the optimized airfoil increased,and the noise also decreased.Thus,the optimization method can be used to address special design of low-noise airfoil.Besides,the optimization method in this paper can provide reference for improving lift-to-drag ratio and reducing noise of the airfoil in aircraft and submarine rudder system.展开更多
基金supported by the National Natural Science Foundation Project under Grant Numbers[51966018,51466015].
文摘To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.
基金supported by the National Natural Science Foundation Projects(grant number 51966018)the Key Research&Development Program of Xinjiang(grant number 2022B01003).
文摘A linear microporous blade tip structure is designed in order to reduce the aerodynamic noise of a wind turbine during operations.Various structures of such a kind are considered and the related aerodynamic noise is determined in the framework of large vortex simulation and acoustic array test methods.The findings demonstrate that various blade tip designs can enhance the vortex trajectory in the tip region and lessen the pressure differential between the blade’s upper and lower surfaces.In particular,the wind turbine’s maximum linear velocity at the blade tip can be increased by 10%–23%while also effectively reducing the radial and axial aerodynamic noise during operation.A trailing edge microporous structure displays a better noise reduction effect than a leading edge microporous structure,and the maximum sound pressure level is reduced by an average of 1.92%–3.63%.The main factors influencing the wind turbine’s aerodynamic noise are its size and placement of microporous holes.
文摘This paper outlines a plan for the effective reduction of the audible sound level produced by aerodynamic noise from the power-generating turbine blades. The contribution of aerodynamic noise can be divided into two categories: inflow turbulence and airfoil self-noise. The base model and retrofit blade designs were modeled in SolidWorks. Subsequently, noise prediction simulations were conducted and compared to the base blade model to determine which modification provided the greatest benefit using SolidWorks Flow Simulation. The result of this project is a series of blade retrofit recommendations that produce a more acoustically efficient design and reduce noise complaints while enabling turbines to be placed in locations that require quieter operations.
文摘To discuss the relationship between the periodicity noise and the aerodynamic noise source of a wind turbine, the characteristics of the actual wind turbine were measured by a wind tunnel;moreover, the flow around the impeller immersed in the uniform flow was solved by numerical simulation. In the observed wind turbine, when the mainstream velocity was 7.4 m/s or more, the power coefficient reached maximum at tip speed ratio 8. When the mainstream velocity increased in the driving condition of the maximum power point, the aerodynamic noise increased due to the periodicity noise in the vicinity of 1000 Hz and the broadband noise in the high-frequency domain. The noise sources were concentrated at the leading edge and trailing edge on the suction surface side. We experimentally indicated that the pressure fluctuation of the leading edge was the source of the periodicity noise.
基金This work was funded by the National Basic Research Program of China(973 Program)(No.2014CB046200)the National Nature science Foundation(No.51506089)+1 种基金the Jiangsu Provincial Natural Science Foundation(No.BK20140059)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘With lower turbulence and less rigorous restrictions on noise levels,offshore wind farms provide favourable conditions for the development of high-tip-speed wind turbines.In this study,the multi-objective optimization is presented for a 5MW wind turbine design and the effects of high tip speed on power output,cost and noise are analysed.In order to improve the convergence and efficiency of optimization,a novel type of gradient-based multi-objective evolutionary algorithm is proposed based on uniform decomposition and differential evolution.Optimization examples of the wind turbines indicate that the new algorithm can obtain uniformly distributed optimal solutions and this algorithm outperforms the conventional evolutionary algorithms in convergence and optimization efficiency.For the 5MW wind turbines designed,increasing the tip speed can greatly reduce the cost of energy(COE).When the tip speed increases from 80m/s to 100m/s,under the same annual energy production,the COE decreases by 3.2%in a class I wind farm and by 5.1%in a class III one,respectively,while the sound pressure level increases by a maximum of 4.4dB with the class III wind farm case.
基金funded by the National Nature Science Founda-tion of China(Grant Nos.51905469 and 11672261)the National key research and development program of China under grant number(Grant No.2019YFE0192600)。
文摘Wind turbine blades are prone to failure due to high tip speed,rain,dust and so on.A surface condition detecting approach based on wind turbine blade aerodynamic noise is proposed.On the experimental measurement data,variational mode decomposition filtering and Mel spectrogram drawing are conducted first.The Mel spectrogram is divided into two halves based on frequency characteristics and then sent into the convolutional neural network.Gaussian white noise is superimposed on the original signal and the output results are assessed based on score coefficients,considering the complexity of the real environment.The surfaces of Wind turbine blades are classified into four types:standard,attachments,polishing,and serrated trailing edge.The proposed method is evaluated and the detection accuracy in complicated background conditions is found to be 99.59%.In addition to support the differentiation of trained models,utilizing proper score coefficients also permit the screening of unknown types.
基金supported by New and Renewable Energy R&D Program (Grant No. 2009T100100231) under Ministry of Knowledge and Economy,Republic of Korea
文摘Wind power is one of the most reliable renewable energy sources and internationally installed capacity is increasing radically every year.Although wind power has been favored by the public in general,the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased.Low noise wind turbine design is becoming more and more important as noise is spreading more adverse effect of wind turbine to public.This paper demonstrates the design of 10 kW class wind turbines,each of three blades,a rotor diameter 6.4 m,a rated rotating speed 200 r/min and a rated wind speed 10 m/s.The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade is trailing edge noise from the outer 25% of the blade.Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at 1.02×106 with a lift performance,which is resistant to surface contamination and turbulence intensity.The objectives in the design process are to reduce noise emission,while sustaining high aerodynamic efficiency.Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al.and Lowson associated with typical wind turbine operation conditions.During the airfoil redesign process,the aerodynamic performance is analyzed to reduce the wind turbine power loss.The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis.Therefore,the new optimized airfoil showing 2.9 dB reductions of total sound pressure level(SPL) and higher aerodynamic performance are achieved.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK20190871)the National Natural Science Foundation of China(11672261)。
文摘Aerodynamic noise is the main problem restricting its development nowadays in green energy,ocean engineering and aerospace engineering.In order to limit the aerodynamic noise of an airfoil structure,a method is proposed in this paper by designing low noise airfoils.This method optimized the aerodynamic noise of two-dimensional airfoil,and considered the aerodynamic performance of the airfoil at the same time.Based on Joukowski conformal transformation,airfoil geometry is parameterized firstly.Then,the optimization model taking the lift-to-drag ratio and airfoil self-noise as the design objective,is established to modify the airfoil by active set algorithm until the airfoil can satisfy the design condition.Finally,the noise of the optimized airfoil is verified according to the prediction theory of airfoil noise.Moreover,the relationship between airfoil geometry and noise is analyzed.The results show that the lift-to-drag ratio of the optimized airfoil increased,and the noise also decreased.Thus,the optimization method can be used to address special design of low-noise airfoil.Besides,the optimization method in this paper can provide reference for improving lift-to-drag ratio and reducing noise of the airfoil in aircraft and submarine rudder system.