期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical simulation and optimization of aerodynamic uplift force of a high-speed pantograph 被引量:7
1
作者 Zhiyuan Dai Tian Li +2 位作者 Ning Zhou Jiye Zhang Weihua Zhang 《Railway Engineering Science》 2022年第1期117-128,共12页
Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard,... Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components.Three different angles for the baffles are-17°, 0° and 17°.Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckledownstream and knuckle-upstream operating conditions,respectively, which are almost equal and both meet the requirements of the standard EN50367:2012. 展开更多
关键词 High-speed pantograph aerodynamic uplift force BAFFLE Numerical simulation Multibody simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部