期刊文献+
共找到1,473篇文章
< 1 2 74 >
每页显示 20 50 100
Aerodynamic/stealth design of S-duct inlet based on discrete adjoint method
1
作者 Jun DENG Ke ZHAO +4 位作者 Lin ZHOU Wei ZHANG Bowen SHU Jiangtao HUANG Zhenghong GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期725-746,共22页
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ... It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system. 展开更多
关键词 S-duct inlet aerodynamic/stealth optimization design discrete adjoint upwind scheme multilevel fast multipole algorithm(MLFMA)
下载PDF
Stealth Considerations for Aerodynamic Configurations Design of Missiles
2
作者 QASIM Zeeshan ALI Kamran +1 位作者 AMER F Rafique KHURRAM Nisar 《Computer Aided Drafting,Design and Manufacturing》 2009年第1期8-16,共9页
The aerodynamic design of a strategic weapon is of interest, especially when the radar signatures are included in the conceptual design phase. The basics of stealth configurations and stealth mechanisms for missiles a... The aerodynamic design of a strategic weapon is of interest, especially when the radar signatures are included in the conceptual design phase. The basics of stealth configurations and stealth mechanisms for missiles are reviewed. The Radar Cross Sections (RCS) of some generic missiles are predicted and compared to analyze the trade-offs involved between low RCS and aerodynamic performance. The consideration of RCS prediction in the conceptual design phase gives a quick insight into the stealth performance prior to detailed design. 展开更多
关键词 aerodynamic configuration missiles radar cross section radar absorbent material stealth
下载PDF
Sliding mode control for an aerodynamic missile based on backstepping design 被引量:8
3
作者 WenjinGU HongchaoZHAO ChangpengPAN 《控制理论与应用(英文版)》 EI 2005年第1期71-75,共5页
In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backs... In order to solve the mismatched uncertainties of a class of nonlinearsystems, a control method of sliding mode control (SMC) based on the backstepping design isproposed. It introduces SMC in to the last step of backstepping design to modify the backsteppingalgorithm. This combination not only enables the generalization of the backstepping design to beapplied to more general nonlinear systems, but also makes the SMC method become effective in solvingthe mismatched uncertainties. The SMC based on the backstepping design is applied to the flightcontrol system design of an aerodynamic missile. The control system is researched throughsimulation. The simulation results show the effectiveness of the proposed control method. 展开更多
关键词 mismatched uncertainties sliding mode control backstepping design aerodynamic missile
下载PDF
Aerodynamic design on high-speed trains 被引量:20
4
作者 San-San Ding Qiang Li +2 位作者 Ai-Qin Tian Jian Du Jia-Li Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期215-232,共18页
Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The ... Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains. 展开更多
关键词 High-speed train aerodynamic design Optimization design Smooth design
下载PDF
Numerical Optimization on Aerodynamic/Stealth Characteristics of Airfoil Based on CFD/CEM Coupling Method 被引量:2
5
作者 Jiang Xiangwen Zhao Qijun +1 位作者 Zhao Guoqing Meng Chen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第3期274-284,共11页
Based on computational fluid dynamics(CFD)/computational electromagnetics method(CEM)coupling method and surrogate model optimization techniques,an integration design method about aerodynamic/stealth characteristics o... Based on computational fluid dynamics(CFD)/computational electromagnetics method(CEM)coupling method and surrogate model optimization techniques,an integration design method about aerodynamic/stealth characteristics of airfoil is established.The O-type body-fitted and orthogonal grid around airfoil is first generated by using the Poisson equations,in which the points per wave and the normal range satisfy the aerodynamic and electromagnetic calculation accuracy requirement.Then the aerodynamic performance of airfoil is calculated by solving the Navier-Stokes(N-S)equations with Baldwin-Lomax(B-L)turbulence model.The stealth characteristics of airfoil are simulated by using finite volume time domain(FVTD)method based on the Maxwell′s equations,Steger-Warming flux splitting and the third-order MUSCL scheme.In addition,based upon the surrogate model optimization technique with full factorial design(FFD)and radial basis function(RBF),an integration design about aerodynamic/stealth characteristics of rotor airfoil is conducted by employing the CFD/CEM coupling method.The aerodynamic/stealth characteristics of NACA series airfoils with different maximum thickness and camber combinations are discussed.Finally,by choosing suitable lift-to-drag ratio and radar cross section(RCS)amplitudes of rotor airfoil in four important scattering regions as the objective function and constraint,the compromised airfoil with high lift-to-drag ratio and low scattering characteristics is designed via systemic and comprehensive analyses. 展开更多
关键词 rotor airfoil aerodynamic characteristics stealth characteristics CFD/CEM coupling surrogate model
下载PDF
Extended Range Guided Munition Aerodynamic Configuration Design 被引量:5
6
作者 雷娟棉 吴甲生 居贤铭 《Defence Technology(防务技术)》 SCIE EI CAS 2005年第1期61-65,共5页
Based on the analysis of the flying scheme and flying style of an extended range guided munition(ERGM), the aerodynamic characteristics design standards were put forward. According to the standards, the ERGM aerodynam... Based on the analysis of the flying scheme and flying style of an extended range guided munition(ERGM), the aerodynamic characteristics design standards were put forward. According to the standards, the ERGM aerodynamic configuration was designed, and the wind tunnel experiments were processed. The experimental results show that the configuration has lower drag and good static stability at unguided flying stage. Moreover, the stability, maneuverability, rudder deflection angle and balance angle of attack of the configuration are all reasonably matched at guided flying stage, and the munition with the configuration can glide with larger lift-drag ratio at little balance angle of attack. The experimental results also indicate that the canard can't conduct rolling control when 1.0 < Ma < 1.5, so the ERGM must take rolling flight style with certain limited rolling speed. 展开更多
关键词 空气动力学 构造设计 风洞试验 ERGM
下载PDF
Optimal design of the aerodynamic parameters for a supersonic two-dimensional guided artillery projectile 被引量:9
7
作者 Ke Liang Zheng Huang Jing-min Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第3期206-211,共6页
An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of c... An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of canards which can provide lift and despin with the projectile for stability. The optimal design algorithm is developed to decide the profiles both of the steering and spinning canards,and their deflection angles are also simulated to meet the needs of trajectory correction capabilities.Finally, the aerodynamic efficiency of the specific canards is discussed according to the CFD simulations.Results that obtained here can be further applied to the exterior ballistics design. 展开更多
关键词 参数优化设计 制导炮弹 气动参数 二维 超声速 CFD模拟 弹道修正 修正能力
下载PDF
Multidisciplinary design optimization of a dual-spin guided vehicle
8
作者 Jalal Karimi Mohammad Reza Rajabi +1 位作者 Seyed Hossein Sadati Seyed Mahid Hosseini 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期133-148,共16页
In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a par... In this research,a Multidisciplinary Design Optimization approach is proposed for the dual-spin guided flying projectile design considering external and internal parts of the body as design variables.In this way,a parametric formulation is developed.All related disciplines,including structure,aerodynamics,guidance,and control are considered.Minimum total mass,maximum aerodynamic control effectiveness,minimum miss distance,maximum yield stress in all subsystems,controllability and gyroscopic stability constraints are some of objectives/constraints taken into account.The problem is formulated in All-At-Ones Multidisciplinary Design Optimization approach structure and solved by Simulated Annealing and minimax algorithms.The optimal configurations are evaluated in various aspects.The resulted optimal configurations have met all design objectives and constraints. 展开更多
关键词 Flying projectile optimal design All-at-ones multidisciplinary optimization Structure discipline Guidance and control discipline aerodynamic discipline
下载PDF
OPTIMAL DESIGN AND AERODYNAMIC CALCULATION OF WING CONFIGURATION OF CIVIL AIRCRAFT
9
作者 Wang Liangyi(Department of Aerddynamics,NUAA 29 Yudao Street,Nanjing 210016,P.R.China) 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1994年第2期165-169,共5页
An effective method of optimal design of wing configuration is provided. The SUMT (sequential unconstained minimization technique) method is a good technique for solving the nonlinear programming. The application of p... An effective method of optimal design of wing configuration is provided. The SUMT (sequential unconstained minimization technique) method is a good technique for solving the nonlinear programming. The application of penalty in optimal design of wing configuration has been solved well. The present method for the aerodynamic calculation is the combination of both the nonlinear panel method and the suction analogy method of vortexlift spanwise distribution on large swept wing-tip. The calculation results are in good agreement with experimental data. According to the computation and experiment,the mechanism of the increased lift and reduced drag about the sheared wing-tip wing has been analyzed, and some opinions of interest are proposed. 展开更多
关键词 optimum design aerodynamic COMPUTATIONS CIVIL AIRCRAFT sheared wing-tip WING PENALTY function
下载PDF
Multi-objective aerodynamic optimization design of high-speed maglev train nose 被引量:1
10
作者 Shuanbao Yao Dawei Chen Sansan Ding 《Railway Sciences》 2022年第2期273-288,共16页
Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trai... Purpose–The nose length is the key design parameter affecting the aerodynamic performance of high-speed maglev train,and the horizontal profile has a significant impact on the aerodynamic lift of the leading and trailing cars Hence,the study analyzes aerodynamic parameters with multi-objective optimization design.Design/methodology/approach–The nose of normal temperature and normal conduction high-speed maglev train is divided into streamlined part and equipment cabin according to its geometric characteristics.Then the modified vehicle modeling function(VMF)parameterization method and surface discretization method are adopted for the parametric design of the nose.For the 12 key design parameters extracted,combined with computational fluid dynamics(CFD),support vector machine(SVR)model and multi-objective particle swarm optimization(MPSO)algorithm,the multi-objective aerodynamic optimization design of highspeed maglev train nose and the sensitivity analysis of design parameters are carried out with aerodynamic drag coefficient of the whole vehicle and the aerodynamic lift coefficient of the trailing car as the optimization objectives and the aerodynamic lift coefficient of the leading car as the constraint.The engineering improvement and wind tunnel test verification of the optimized shape are done.Findings–Results show that the parametric design method can use less design parameters to describe the nose shape of high-speed maglev train.The prediction accuracy of the SVR model with the reduced amount of calculation and improved optimization efficiency meets the design requirements.Originality/value–Compared with the original shape,the aerodynamic drag coefficient of the whole vehicle is reduced by 19.2%,and the aerodynamic lift coefficients of the leading and trailing cars are reduced by 24.8 and 51.3%,respectively,after adopting the optimized shape modified according to engineering design requirements. 展开更多
关键词 design of head shape Maglev train aerodynamic parameter Multi-objective optimization Parametric design
下载PDF
Aerodynamic design of transonic fan/compressor by 3D viscous RNS combined with genetic algorithms
11
作者 姜斌 王松涛 +1 位作者 冯国泰 王仲奇 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期143-148,共6页
This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on t... This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on the design experience for designers.Furthermore the optimum with genetic algorithms is an effective method for improving the transonic fan performance as a part of the design system.The design result showed that the transonic fan designed by this method reaches the design requirement even with more efficiency value. 展开更多
关键词 transonic fan aerodynamic design shock structure genetic algorithm
下载PDF
Conceptual Design and Aerodynamic Study of Joined-Wing Business Jet Aircraft
12
作者 Harijono Djojodihardjo Kim Em Foong 《Journal of Mechanics Engineering and Automation》 2013年第5期263-278,共16页
关键词 空气动力学性能 概念设计 喷气飞机 商务 注册 诱导阻力 喷气机 风洞试验
下载PDF
Influences of aerodynamic loads on hunting stability of high-speed railway vehicles and parameter studies 被引量:9
13
作者 Xiao-Hui Zeng Han Wu +1 位作者 Jiang Lai Hong-Zhi Sheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期889-900,共12页
The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerod... The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads:the aerodynamic loads can change the position of vehicle system(consequently the contact relations),the wheel/rail normal contact forces,the gravitational restoring forces/moments and the creep forces/moments.A mathematical model for hunting stability incorporating such influences was developed.A computer program capable of incorporating the effects of aerodynamic loads based on the model was written,and the critical speeds were calculated using this program.The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method,the results were also compared with the situations without aerodynamic loads.It is shown that the most dominant factors a ff ecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not.The damping of yaw damper is the most dominant influencing factor for linear critical speeds,while the damping of lateral damper is most dominant for nonlinear ones.When the influences of aerodynamic loads are considered,the linear critical speeds decrease with the rise of cross wind velocity,whereas it is not the case for the nonlinear critical speeds.The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads.Combined actions of aerodynamic loads and suspension parameters also a ff ect the critical speeds.The effects of such joint action are more obvious for nonlinear critical speeds. 展开更多
关键词 Hunting stability Linear critical speed Nonlinear critical speed aerodynamic loads Suspension parameters Orthogonal experimental design
下载PDF
Influence of Surrounding Structures upon the Aerodynamic and Acoustic Performance of the Outdoor Unit of a Split Air-Conditioner 被引量:3
14
作者 WU Chengjun LIU Jiang PAN Jie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期836-845,共10页
DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structu... DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h~(-1)) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice. 展开更多
关键词 DC-inverter split air-conditioner outdoor unit surrounding structure computational fluid dynamics(CFD) computational aerodynamic acoustics(CAA) simulation improved design
下载PDF
Study of the aerostatic and aerodynamic stability of super long-span cable-stayed bridges 被引量:2
15
作者 Zhang Xinjun Sun Hailing 《Engineering Sciences》 EI 2014年第2期82-92,共11页
With the increase of span length,the bridge tends to be more flexible,and the wind stability becomes an important problem for the design and construction of super long-span cable-stayed bridges. By taking a super long... With the increase of span length,the bridge tends to be more flexible,and the wind stability becomes an important problem for the design and construction of super long-span cable-stayed bridges. By taking a super long-span cable-stayed bridge with a main span of 1 400 m as example,the aerostatic and aerodynamic stability of the bridge are investigated by three-dimensional nonlinear aerostatic and aerodynamic stability analysis,and the results are compared with those of a suspension bridge with a main span of 1 385 m,and from the aspect of wind stability,the feasibility of using cable-stayed bridge in super long-span bridge with a main span above 1 000 m is discussed. In addition,the influences of design parameters including the depth and width of the girder,the tower structure,the tower height-to-span ratio,the side-to-main span ratio,the auxiliary piers in the side span and the anchorage system of stay cables,etc on the aerostatic and aerodynamic stability of super long-span cable-stayed bridges are investigated numerically;the key design parameters are pointed out,and also their reasonable values are proposed. 展开更多
关键词 大跨度斜拉桥 空气动力稳定性 动力学稳定性 静风 大跨度桥梁 设计参数 空气静力 三维非线性
下载PDF
Multiple Frequency Cancellation Method for Stealth Design of UWB End-Fire Antenna Array
16
作者 Rong Xinghua He Xiaoxiang +2 位作者 Yang Yang Ye Xingwei Wang Wei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期664-670,共7页
A multiple frequency cancellation(MFC)method is proposed for stealth design of ultra-wide band(UWB)end-fire antenna array.The proposed method can produce significant radar cross section(RCS)reduction in the whole oper... A multiple frequency cancellation(MFC)method is proposed for stealth design of ultra-wide band(UWB)end-fire antenna array.The proposed method can produce significant radar cross section(RCS)reduction in the whole operating band.The 1×4 and 4×4 Vivaldi antenna arrays of different kinds of cancellation structures are discussed as examples to validate the effectiveness of the MFC method on both linear and planar arrays.On average,22.6 dB reduction of monostatic radar cross section(MRCS)is obtained in the whole X-band.MRCS under oblique incident waves is also reduced within±60°.Basically favorable radiation characteristics are maintained. 展开更多
关键词 stealth design antenna array ultra-wide band (UWB) multiple frequency cancellation (MFC)
下载PDF
Hypersonic Waverider Surface Development Using Aerodynamic Flow Around Conical Bodies
17
作者 Najam-us-Saqib 《Computer Aided Drafting,Design and Manufacturing》 2006年第1期63-69,共7页
Developing the waverider based hypersonic vehicles is an inverse design process in which shape is developed from a known flow field by tracing of streamlines to form a stream surface. The flow field can be based on a ... Developing the waverider based hypersonic vehicles is an inverse design process in which shape is developed from a known flow field by tracing of streamlines to form a stream surface. The flow field can be based on a solution of Taylor Maccoll equation for a specified shock or cone angle. This Paper discusses the development of waverider shapes for hypersonic reentry vehicles. 展开更多
关键词 aerodynamic design hypersonics waveriders surface generation
下载PDF
Analysis on Aerodynamic Performance of Finite Swept Wing with Glaze Ice Accretions
18
作者 AUNG Ko Wynn 《Computer Aided Drafting,Design and Manufacturing》 2010年第2期15-22,共8页
A computational investigation was performed to predict the effects of aerodynamic performance degradation on aircraft swept taper wing with and without 10 minutes and 22.5 minutes glaze ice accretions. In this study, ... A computational investigation was performed to predict the effects of aerodynamic performance degradation on aircraft swept taper wing with and without 10 minutes and 22.5 minutes glaze ice accretions. In this study, the three-dimensional simulated glaze ice shapes were defined from a series of two-dimensional ice sections. The aerodynamic performances of glaze iced swept wings with C-H structure multi-block grid were analyzed and evaluated. The steady Reynolds- Averaged Navier-Stokes (RANS) equations are employed to compute solutions with implementation of two equation Shear-Stress Transport (SST) turbulence model and second-order upwind differencing for entire iced wing flow field. Computed results were compared with available experimental data. The CFD computation can also accurately predict the aerodynamic performance degradation of lift, drag and pressure coefficients of finite swept wing with glaze ice accretions which have two big upper and lower horn. 展开更多
关键词 aerodynamic characteristics Reynolds-Averaged Navier-Stokes equations computational fluid dynamics computer aided design ice accretions grid generation numerical simulation
下载PDF
高速飞行器气动控制耦合优化设计方法研究
19
作者 董超 潘鑫 +1 位作者 姜璐璐 陈刚 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第8期196-204,共9页
针对传统串行设计过程由于空气动力学和控制系统数学模型复杂、无法综合考虑气动和控制的多目标优化的问题,提出了一种面向高速飞行器气动控制耦合优化设计方法。基于气动单学科代理优化(SBO)算法,将飞行器主动控制技术(ACT)的思想与多... 针对传统串行设计过程由于空气动力学和控制系统数学模型复杂、无法综合考虑气动和控制的多目标优化的问题,提出了一种面向高速飞行器气动控制耦合优化设计方法。基于气动单学科代理优化(SBO)算法,将飞行器主动控制技术(ACT)的思想与多学科优化方法(MDO)相结合,构建了高速飞行器气动控制耦合多目标优化流程架构。在2马赫来流条件下,对带有控制舵的双锥体外形开展了气动耦合优化设计研究,以提升飞行器的气动性能和控制能力为优化目标。结果表明:经过气动控制耦合优化后的最优模型在超声速环境下,升力系数和升阻比分别提升了0.401%、2.999%,同时超调量与控制增益分别降低了2.769%、0.655%,气动性能和控制能力得到提升,验证了耦合策略的可行性;气动控制耦合优化的最优模型不仅使飞行器在超声速工作环境下性能更卓越,还有助于降低后续控制系统的设计难度,提高飞行器设计效率。所提气动控制耦合优化设计方法为高速飞行器的先进设计提供了必要的技术支撑。 展开更多
关键词 高速飞行器 气动控制耦合 多学科优化 外形设计
下载PDF
无参数自适应罚函数的高效代理模型优化设计方法
20
作者 张伟 高正红 +1 位作者 王超 夏露 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1262-1272,共11页
在飞行器气动外形优化设计中,复杂约束条件导致设计空间可行域呈现不连续的特征,且理想解大多靠近约束边界,传统高效代理模型方法难以适用。研究了参考点对优化设计的影响,提出了一种考虑约束的参考点选择机制;对于最优解靠近边界的问题... 在飞行器气动外形优化设计中,复杂约束条件导致设计空间可行域呈现不连续的特征,且理想解大多靠近约束边界,传统高效代理模型方法难以适用。研究了参考点对优化设计的影响,提出了一种考虑约束的参考点选择机制;对于最优解靠近边界的问题,罚函数法更加有效,但惩罚因子的设置对于罚函数方法影响很大,不合适的惩罚因子反而会损害优化效率,分析了优化过程中罚函数方法对惩罚因子的要求,提出了一种无参数自适应罚函数的代理模优化设计方法,引入基于样本分析的惩罚项,结合归一化目标值和约束值,在优化过程中动态调整惩罚因子,使优化能够尽可能地聚焦于可行域内,迅速收敛到最优解,实现样本的高效配置。通过带约束的函数算例和翼型优化算例证实,所提方法可以大幅提高飞行器气动外形优化设计效率。 展开更多
关键词 优化设计 代理模型 参考点 气动设计 自适应罚函数
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部