It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of i...We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of interpolation supplemented LBM) on non-uniform meshes. The first-order approximation for the equilibrium dis- tribution function on the boundary is proposed to diminish the singularity of boundary conditions. Further, a new treatment of the solid boundary in the LBM is described par- ticularly for the airfoil optimization design problem. For a given objective function, the adjoint equation and its boundary conditions are derived analytically. The feasibility and accuracy of the new approach have been perfectly validated by the design optimization of NACA0012 airfoil.展开更多
In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the develop...In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the development of aerodynamics,this article analyzes the development of aerodynamic optimization design and dynamic numerical simulation technology,then lists engineering applications.Both aerodynamic optimization design and dynamic numerical simulation have greatly shortened the UAV design period and reduced the research and design cost.These two methods gradually replace traditional methods such as wind tunnel test.展开更多
Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The ...Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains.展开更多
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number...In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method.展开更多
This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous ...This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived.With the adjoint method,the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function,regardless of the number of design parameters.An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method.Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil,wing,and wing-body configuration,and the aerodynamic performance improvement of turbine and compressor blade rows.The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.展开更多
This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few y...This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize tm-bomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.展开更多
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camb...Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.展开更多
The design optimization taking into account the impact of uncertainties favors improving the robustness of the design.A Surrogate-Assisted Gradient-Based(SAGB)method for the robust aerodynamic design optimization of t...The design optimization taking into account the impact of uncertainties favors improving the robustness of the design.A Surrogate-Assisted Gradient-Based(SAGB)method for the robust aerodynamic design optimization of turbomachinery blades considering large-scale uncertainty is introduced,verified and validated in the study.The gradient-based method is employed due to its high optimization efficiency and any one surrogate model with sufficient response accuracy can be employed to quantify the nonlinear performance changes.The gradients of objective performance function to the design parameters are calculated first for all the training samples,from which the gradients of cost function can be fast determined.To reveal the high efficiency and high accuracy of SAGB on gradient calculation,the number of flow computations needed is evaluated and compared with three other methods.Through the aerodynamic design optimization of a transonic turbine cascade minimizing total pressure loss at the outlet,the SAGB-based gradients of the base and optimized blades are compared with those obtained by the Monte Carlo-assisted finite difference method.Moreover,the results of both the robust and deterministic aerodynamic design optimizations are presented and compared to demonstrate the practicability of SAGB on improving the aerodynamic robustness of turbomachinery blades.展开更多
This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a...This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a system space compared to the widely used semi-empirical basis functions because they are obtained through singular value decomposition of the system.Instead of the widely used linear regression, nonlinear regression methods are used in the function response of the coefficients of POD basis modes. Moreover, an adaptive Latin hypercube design method with improved space filling and correlation based on a multi-objective optimization approach was employed to supply the necessary samples. Prior to design optimization, the response performance of POD-based hybrid models was first investigated and validated through flow reconstructions of both single-and multiple blade rows. Then, an inverse design was performed to approach a given spanwise flow turning distribution at the outlet of a turbine blade by changing the spanwise stagger angle, based on the hybrid model method. Finally, the span wise blade sweep of a transonic compressor rotor and the spanwise stagger angle of the stator blade of a single low-speed compressor stage were modified to reduce the flow losses with the constraints of mass flow rate, total pressure ratio, and outlet flow turning.The results are presented in detail, demonstrating the good response performance of POD-based hybrid models on missing data reconstructions and the effectiveness of POD-based hybrid model method in aerodynamic design optimization.展开更多
This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design id...This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.展开更多
A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional...A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional Navier-Stokes solver and an optimization approach. The objective of the present paper is to design a transonic compressor blading optimized only by selection of the locations of maximum camber and maximum thickness for the airfoils at different span heights and to study how do these two design parameters affect the blade performance. The blading configuration and the computational meshes can be obtained very rapidly for any given combination of maximum camber and maximum thickness. The computational grid system generated is used for the Navier-Stokes solution to predict adiabatic efficiency, total pressure ratio and flow rate. As a main result of the optimization, adiabatic efficiency was successfully improved.展开更多
This paper presents a simple and useful modeling method to acquire a dynamics model of an aerial vehicle containing unknown parameters using mechanism modeling,and then to design different identifcation experiments to...This paper presents a simple and useful modeling method to acquire a dynamics model of an aerial vehicle containing unknown parameters using mechanism modeling,and then to design different identifcation experiments to identify the parameters based on the sources and features of its unknown parameters.Based on the mathematical model of the aerial vehicle acquired by modeling and identifcation,a design for the structural parameters of the attitude control system is carried out,and the results of the attitude control flaps are verifed by simulation experiments and flight tests of the aerial vehicle.Results of the mathematical simulation and flight tests show that the mathematical model acquired using parameter identifcation is comparatively accurate and of clear mechanics,and can be used as the reference and basis for the structural design.展开更多
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
基金Project supported by the National Basic Research Program of China(No.2014CB744100)the National Natural Science Foundation of China(Nos.61403245 and 91648119)the Shanghai Municipal Science and Technology Commision(No.14500500400)
文摘We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of interpolation supplemented LBM) on non-uniform meshes. The first-order approximation for the equilibrium dis- tribution function on the boundary is proposed to diminish the singularity of boundary conditions. Further, a new treatment of the solid boundary in the LBM is described par- ticularly for the airfoil optimization design problem. For a given objective function, the adjoint equation and its boundary conditions are derived analytically. The feasibility and accuracy of the new approach have been perfectly validated by the design optimization of NACA0012 airfoil.
文摘In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the development of aerodynamics,this article analyzes the development of aerodynamic optimization design and dynamic numerical simulation technology,then lists engineering applications.Both aerodynamic optimization design and dynamic numerical simulation have greatly shortened the UAV design period and reduced the research and design cost.These two methods gradually replace traditional methods such as wind tunnel test.
基金supported by the National Key Technology R&D Program of China (Grant 2013BAG22Q00)the China Railway Science and Technology R&D Program (2015J009-D)
文摘Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
基金supported by the National Natural Science Foundation of China (No. 11502211)
文摘In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method.
基金supported by the National Natural Science Foundation of China(Grant Nos.51206003 and 51376009)the National Science Foundation for Post-doctoral Scientists of China(Grant Nos.2012M510267 and 2013T60035)
文摘This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived.With the adjoint method,the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function,regardless of the number of design parameters.An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method.Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil,wing,and wing-body configuration,and the aerodynamic performance improvement of turbine and compressor blade rows.The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.
文摘This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize tm-bomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.
文摘Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam.
基金National Natural Science Foundation of China(Nos.51676003,51976183)National Science and Technology Major Project of China(No.J2019II-0012-0032)。
文摘The design optimization taking into account the impact of uncertainties favors improving the robustness of the design.A Surrogate-Assisted Gradient-Based(SAGB)method for the robust aerodynamic design optimization of turbomachinery blades considering large-scale uncertainty is introduced,verified and validated in the study.The gradient-based method is employed due to its high optimization efficiency and any one surrogate model with sufficient response accuracy can be employed to quantify the nonlinear performance changes.The gradients of objective performance function to the design parameters are calculated first for all the training samples,from which the gradients of cost function can be fast determined.To reveal the high efficiency and high accuracy of SAGB on gradient calculation,the number of flow computations needed is evaluated and compared with three other methods.Through the aerodynamic design optimization of a transonic turbine cascade minimizing total pressure loss at the outlet,the SAGB-based gradients of the base and optimized blades are compared with those obtained by the Monte Carlo-assisted finite difference method.Moreover,the results of both the robust and deterministic aerodynamic design optimizations are presented and compared to demonstrate the practicability of SAGB on improving the aerodynamic robustness of turbomachinery blades.
基金supported by the National Natural Science Foundation of China(Grant Nos.51676003,51206003 and 51376009)
文摘This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a system space compared to the widely used semi-empirical basis functions because they are obtained through singular value decomposition of the system.Instead of the widely used linear regression, nonlinear regression methods are used in the function response of the coefficients of POD basis modes. Moreover, an adaptive Latin hypercube design method with improved space filling and correlation based on a multi-objective optimization approach was employed to supply the necessary samples. Prior to design optimization, the response performance of POD-based hybrid models was first investigated and validated through flow reconstructions of both single-and multiple blade rows. Then, an inverse design was performed to approach a given spanwise flow turning distribution at the outlet of a turbine blade by changing the spanwise stagger angle, based on the hybrid model method. Finally, the span wise blade sweep of a transonic compressor rotor and the spanwise stagger angle of the stator blade of a single low-speed compressor stage were modified to reduce the flow losses with the constraints of mass flow rate, total pressure ratio, and outlet flow turning.The results are presented in detail, demonstrating the good response performance of POD-based hybrid models on missing data reconstructions and the effectiveness of POD-based hybrid model method in aerodynamic design optimization.
文摘This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.
文摘A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional Navier-Stokes solver and an optimization approach. The objective of the present paper is to design a transonic compressor blading optimized only by selection of the locations of maximum camber and maximum thickness for the airfoils at different span heights and to study how do these two design parameters affect the blade performance. The blading configuration and the computational meshes can be obtained very rapidly for any given combination of maximum camber and maximum thickness. The computational grid system generated is used for the Navier-Stokes solution to predict adiabatic efficiency, total pressure ratio and flow rate. As a main result of the optimization, adiabatic efficiency was successfully improved.
基金supported by the National Natural Science Foundation of China(No.11102019)
文摘This paper presents a simple and useful modeling method to acquire a dynamics model of an aerial vehicle containing unknown parameters using mechanism modeling,and then to design different identifcation experiments to identify the parameters based on the sources and features of its unknown parameters.Based on the mathematical model of the aerial vehicle acquired by modeling and identifcation,a design for the structural parameters of the attitude control system is carried out,and the results of the attitude control flaps are verifed by simulation experiments and flight tests of the aerial vehicle.Results of the mathematical simulation and flight tests show that the mathematical model acquired using parameter identifcation is comparatively accurate and of clear mechanics,and can be used as the reference and basis for the structural design.