期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Aerodynamic/stealth design of S-duct inlet based on discrete adjoint method
1
作者 Jun DENG Ke ZHAO +4 位作者 Lin ZHOU Wei ZHANG Bowen SHU Jiangtao HUANG Zhenghong GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期725-746,共22页
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ... It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system. 展开更多
关键词 S-duct inlet aerodynamic/stealth optimization design discrete adjoint upwind scheme multilevel fast multipole algorithm(MLFMA)
下载PDF
Aerodynamic design on high-speed trains 被引量:21
2
作者 San-San Ding Qiang Li +2 位作者 Ai-Qin Tian Jian Du Jia-Li Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期215-232,共18页
Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The ... Compared with the traditional train,the operational speed of the high-speed train has largely improved,and thedynamicenvironmentofthetrainhaschangedfromoneof mechanical domination to one of aerodynamic domination.The aerodynamic problem has become the key technological challenge of high-speed trains and significantl affects the economy,environment,safety,and comfort.In this paper,the relationships among the aerodynamic design principle,aerodynamic performance indexes,and design variables are firs studied,and the research methods of train aerodynamics are proposed,including numerical simulation,a reducedscale test,and a full-scale test.Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface.Optimization design of the streamlined head includes conception design,project design,numerical simulation,and a reduced-scale test.Smooth design of the body surface is mainly used for the key parts,such as electric-current collecting system,wheel truck compartment,and windshield.The aerodynamic design method established in this paper has been successfully applied to various high-speed trains(CRH380A,CRH380 AM,CRH6,CRH2 G,and the Standard electric multiple unit(EMU)) that have met expected design objectives.The research results can provide an effective guideline for the aerodynamic design of high-speed trains. 展开更多
关键词 High-speed train Aerodynamic design Optimization design Smooth design
下载PDF
Airfoil design optimization based on lattice Boltzmann method and adjoint approach
3
作者 Xiaowei LI Liang FANG Yan PENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第6期891-904,共14页
We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of i... We present a new aerodynamic design method based on the lattice Boltzmann method (LBM) and the adjoint approach. The flow field and the adjoint equation are numerically simulated by the GILBM (generalized form of interpolation supplemented LBM) on non-uniform meshes. The first-order approximation for the equilibrium dis- tribution function on the boundary is proposed to diminish the singularity of boundary conditions. Further, a new treatment of the solid boundary in the LBM is described par- ticularly for the airfoil optimization design problem. For a given objective function, the adjoint equation and its boundary conditions are derived analytically. The feasibility and accuracy of the new approach have been perfectly validated by the design optimization of NACA0012 airfoil. 展开更多
关键词 lattice Boltzmann method (LBM) adjoint approach boundary treatment aerodynamic design optimization
下载PDF
Application of Aerodynamic Optimization Design and Dynamic Numerical Simulation in UAV Design
4
作者 SUN Kaijun YU Yueyang FU Yiwei 《Aerospace China》 2020年第3期38-45,共8页
In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the develop... In the past two decades,the world’s unmanned aerial vehicle(UAV)industry has developed rapidly.Various kinds of UAVs have been used in military and civilian fields.Based on the characteristics of UAVs and the development of aerodynamics,this article analyzes the development of aerodynamic optimization design and dynamic numerical simulation technology,then lists engineering applications.Both aerodynamic optimization design and dynamic numerical simulation have greatly shortened the UAV design period and reduced the research and design cost.These two methods gradually replace traditional methods such as wind tunnel test. 展开更多
关键词 aerodynamic optimization design dynamic numerical simulation UAV
下载PDF
A Study of 3D Aerodynamic Design for a Transonic Compressor Blading Optimized by the Locations of Aerofoil Maximum Thickness and Maximum Camber 被引量:1
5
作者 Naixing Chen Hongwu Zhang Yanji Xu Weiguang HuangInstitute of Engineering Thermophysics, Chinese Academy of Sciences, P.O. Box 2706, Beijing 100080, 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第3期198-203,共6页
A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional... A design procedure for improving the efficiency of a transonic compressor blading was proposed based on a rapid generation method for three-dimensional blade configuration and computational meshes, a three-dimensional Navier-Stokes solver and an optimization approach. The objective of the present paper is to design a transonic compressor blading optimized only by selection of the locations of maximum camber and maximum thickness for the airfoils at different span heights and to study how do these two design parameters affect the blade performance. The blading configuration and the computational meshes can be obtained very rapidly for any given combination of maximum camber and maximum thickness. The computational grid system generated is used for the Navier-Stokes solution to predict adiabatic efficiency, total pressure ratio and flow rate. As a main result of the optimization, adiabatic efficiency was successfully improved. 展开更多
关键词 axial transonic compressor 3D aerodynamic design optimization N.S. solver rapid generation of computational meshes
原文传递
Global aerodynamic design optimization based on data dimensionality reduction 被引量:9
6
作者 Yasong QIU Junqiang BAI +1 位作者 Nan LIU Chen WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期643-659,共17页
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number... In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method. 展开更多
关键词 Aerodynamic shape design optimization Data dimensionality reduction Genetic algorithm Kriging surrogate model Proper orthogonal decomposition
原文传递
Aerodynamic design optimization by using a continuous adjoint method 被引量:7
7
作者 LUO JiaQi XIONG JunTao LIU Feng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第7期1363-1375,共13页
This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous ... This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived.With the adjoint method,the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function,regardless of the number of design parameters.An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method.Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil,wing,and wing-body configuration,and the aerodynamic performance improvement of turbine and compressor blade rows.The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem. 展开更多
关键词 continuous adjoint method aerodynamic design optimization transonic flow computational fluid dynamics aerospace engineering
原文传递
Study on Aerodynamic Design Optimization of Turbomachinery Blades 被引量:3
8
作者 Naixing CHEN Hongwu ZHANG Weiguang HUANG Yanji XU 《Journal of Thermal Science》 SCIE EI CAS CSCD 2005年第4期298-304,320,共8页
This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few y... This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize tm-bomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time. 展开更多
关键词 aerodynamic design optimization response surface method blade parameterization 3D aerodynamics of turbomachinery.
原文传递
Aerodynamic Design Methodology for Blended Wing Body Transport 被引量:31
9
作者 LI Peifeng ZHANG Binqian +2 位作者 CHEN Yingchun YUAN Changsheng LIN Yu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第4期508-516,共9页
This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design id... This paper puts forward a design idea for blended wing body(BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work. 展开更多
关键词 blended wing body aerodynamic configurations computational fluid dynamics optimization design inverse design
原文传递
Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap 被引量:12
10
作者 Weishuang LU Yun TIAN Peiqing LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期988-1003,共16页
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camb... Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam. 展开更多
关键词 Aerodynamic optimization GA(W)-2 airfoil Mechanism design Trailing-edge flap Variable camber
原文传递
A gradient-based method assisted by surrogate model for robust optimization of turbomachinery blades 被引量:5
11
作者 Jiaqi LUO Zeshuai CHEN Yao ZHENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期1-7,共7页
The design optimization taking into account the impact of uncertainties favors improving the robustness of the design.A Surrogate-Assisted Gradient-Based(SAGB)method for the robust aerodynamic design optimization of t... The design optimization taking into account the impact of uncertainties favors improving the robustness of the design.A Surrogate-Assisted Gradient-Based(SAGB)method for the robust aerodynamic design optimization of turbomachinery blades considering large-scale uncertainty is introduced,verified and validated in the study.The gradient-based method is employed due to its high optimization efficiency and any one surrogate model with sufficient response accuracy can be employed to quantify the nonlinear performance changes.The gradients of objective performance function to the design parameters are calculated first for all the training samples,from which the gradients of cost function can be fast determined.To reveal the high efficiency and high accuracy of SAGB on gradient calculation,the number of flow computations needed is evaluated and compared with three other methods.Through the aerodynamic design optimization of a transonic turbine cascade minimizing total pressure loss at the outlet,the SAGB-based gradients of the base and optimized blades are compared with those obtained by the Monte Carlo-assisted finite difference method.Moreover,the results of both the robust and deterministic aerodynamic design optimizations are presented and compared to demonstrate the practicability of SAGB on improving the aerodynamic robustness of turbomachinery blades. 展开更多
关键词 Robust aerodynamic design optimization TURBOMACHINERY Adjoint method Surrogate model Uncertainty quantification
原文传递
Flow reconstructions and aerodynamic shape optimization of turbomachinery blades by POD-based hybrid models 被引量:2
12
作者 LUO JiaQi ZHU YaLu +1 位作者 TANG Xiao LIU Feng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第11期1658-1673,共16页
This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a... This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a system space compared to the widely used semi-empirical basis functions because they are obtained through singular value decomposition of the system.Instead of the widely used linear regression, nonlinear regression methods are used in the function response of the coefficients of POD basis modes. Moreover, an adaptive Latin hypercube design method with improved space filling and correlation based on a multi-objective optimization approach was employed to supply the necessary samples. Prior to design optimization, the response performance of POD-based hybrid models was first investigated and validated through flow reconstructions of both single-and multiple blade rows. Then, an inverse design was performed to approach a given spanwise flow turning distribution at the outlet of a turbine blade by changing the spanwise stagger angle, based on the hybrid model method. Finally, the span wise blade sweep of a transonic compressor rotor and the spanwise stagger angle of the stator blade of a single low-speed compressor stage were modified to reduce the flow losses with the constraints of mass flow rate, total pressure ratio, and outlet flow turning.The results are presented in detail, demonstrating the good response performance of POD-based hybrid models on missing data reconstructions and the effectiveness of POD-based hybrid model method in aerodynamic design optimization. 展开更多
关键词 flow reconstruction aerodynamic design optimization proper orthogonal decomposition TURBOMACHINERY hybrid model computational fluid dynamics TRANSONIC
原文传递
Flight dynamics modeling of a small ducted fan aerial vehicle based on parameter identifcation 被引量:5
13
作者 Wang Zhengjie Liu Zhijun +1 位作者 Fan Ningjun Guo Meifang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1439-1448,共10页
This paper presents a simple and useful modeling method to acquire a dynamics model of an aerial vehicle containing unknown parameters using mechanism modeling,and then to design different identifcation experiments to... This paper presents a simple and useful modeling method to acquire a dynamics model of an aerial vehicle containing unknown parameters using mechanism modeling,and then to design different identifcation experiments to identify the parameters based on the sources and features of its unknown parameters.Based on the mathematical model of the aerial vehicle acquired by modeling and identifcation,a design for the structural parameters of the attitude control system is carried out,and the results of the attitude control flaps are verifed by simulation experiments and flight tests of the aerial vehicle.Results of the mathematical simulation and flight tests show that the mathematical model acquired using parameter identifcation is comparatively accurate and of clear mechanics,and can be used as the reference and basis for the structural design. 展开更多
关键词 aerodynamics Experimental aerodynamics Flight vehicle design Multidisciplinary design optimization Structural design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部