In this paper, we have studied several classes of planar piecewise Hamiltonian systems with three zones separated by two parallel straight lines. Firstly, we give the maximal number of limit cycles in these classes of...In this paper, we have studied several classes of planar piecewise Hamiltonian systems with three zones separated by two parallel straight lines. Firstly, we give the maximal number of limit cycles in these classes of systems with a center in two zones and without equilibrium points in the other zone (or with a center in one zone and without equilibrium points in the other zones). In addition, we also give examples to illustrate that it can reach the maximal number.展开更多
Gyllenberg and Yan(Discrete Contin Dyn Syst Ser B 11(2):347–352,2009)presented a system in Zeeman’s class 30 of 3-dimensional Lotka-Volterra(3D LV)competitive systems to admit at least two limit cycles,one of which ...Gyllenberg and Yan(Discrete Contin Dyn Syst Ser B 11(2):347–352,2009)presented a system in Zeeman’s class 30 of 3-dimensional Lotka-Volterra(3D LV)competitive systems to admit at least two limit cycles,one of which is generated by the Hopf bifurcation and the other is obtained by the Poincaré-Bendixson theorem.Yu et al.(J Math Anal Appl 436:521–555,2016,Sect.3.4)recalculated the first Liapunov coefficient of Gyllenberg and Yan’s system to be positive,rather than negative as in Gyllenberg and Yan(2009),and pointed out that the Poincaré-Bendixson theorem is not applicable for that system.Jiang et al.(J Differ Equ 284:183–218,2021,p.213)proposed an open question:“whether Zeeman’s class 30 can be rigorously proved to admit at least two limit cycles by the Hopf theorem and the Poincaré-Bendixson theorem?”This paper provides four systems in Zeeman’s class 30 to admit at least two limit cycles by the Hopf theorem and the Poincaré-Bendixson theorem and gives an answer to the above question.展开更多
In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We ...In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We prove that (1) possesses at most one limit cycle and give out the necessary and sufficient conditions of existence and uniqueness of limit cycles.展开更多
In this paper, we have proved several theorems which guarantee that the Lienard equation has at least one or n limit cycles without using the traditional assumption G Thus some results in [3-5] are extended. The limit...In this paper, we have proved several theorems which guarantee that the Lienard equation has at least one or n limit cycles without using the traditional assumption G Thus some results in [3-5] are extended. The limit cycles can be located by our theorems. Theorems 3 and 4 give sufficient conditions for the existence of n limit cycles having no need of the conditions that the function F(x) is odd or 'nth order compatible with each other' or 'nth order contained in each other'.展开更多
In this paper, we investigate the existence of local limit cycles obtained by perturbing degenerate and weak foci of two-dimensional cubic systems of differential equations. In particular, we consider a specific class...In this paper, we investigate the existence of local limit cycles obtained by perturbing degenerate and weak foci of two-dimensional cubic systems of differential equations. In particular, we consider a specific class of such systems where the origin is a degenerate focus. By utilizing a Liapunov function method and the stability results that follow, we first determine constraints on the system to maximize the number of local limit cycles that can be obtained by perturbing the degenerate focus at the origin. Once this is established, we add on the additional assumption that the system has a weak focus at , where , and determine conditions to maximize the number of additional local limit cycles that can be obtained near this fixed point. We will ultimately achieve an example of a cubic system with three local limit cycles about the degenerate focus and one local limit cycle about the weak focus.展开更多
This paper is concerned with a cubic Kolmogorov system with a solution of central quadratic curve which neither contacts with the coordinate axes, nor passes through the origin. The conclusion is that such a system ma...This paper is concerned with a cubic Kolmogorov system with a solution of central quadratic curve which neither contacts with the coordinate axes, nor passes through the origin. The conclusion is that such a system may possess limit cycles.展开更多
It is proved that the quadratic system with a weak focus and a strong focus has at most one limit cycle around the strong focus, and as the weak focus is a 2nd order(or 3rd order) weak focus the quadratic system ha...It is proved that the quadratic system with a weak focus and a strong focus has at most one limit cycle around the strong focus, and as the weak focus is a 2nd order(or 3rd order) weak focus the quadratic system has at most two(one) limit cycles which have (1,1) distribution ((0,1) distribution).展开更多
In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3...In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3) distri-butions of limit cycles, we expand the variable regions of parameters ( s , r) and clearly. show them in figure, (c) we study the (1, 3) distributions of limit cycles of one kind quadratic systems with two singular points at the infinite: and (d) we give a generalmethod to discuss the ( 1 ,3) distibutions`of limit cycles of system (1.1) whatever there isone, two or three singular points at the infinite.展开更多
In [1], by a transformation on the Liemrd equation system suchihai the trajectories of (1)on both left and right half -planes change into thoseintegral curves of the new equation system merely on the right half-pla...In [1], by a transformation on the Liemrd equation system suchihai the trajectories of (1)on both left and right half -planes change into thoseintegral curves of the new equation system merely on the right half-plane,A.F.Hilippov shows that under some certain conditions the stable limit cycles of system (1)must exist.Applying the Filippov’s method on the more generalized systemthis paper provides a sufficient condition for the existence of the stable limit cycles oftvstem (2).展开更多
This paper is concerned with the number and distributions of limit cycles of a cubic Z2-symmetry Hamiltonian system under quintic perturbation.By using qualitative analysis of differential equation,bifurcation theory ...This paper is concerned with the number and distributions of limit cycles of a cubic Z2-symmetry Hamiltonian system under quintic perturbation.By using qualitative analysis of differential equation,bifurcation theory of dynamical systems and the method of detection function,we obtain that this system exists at least 14 limit cycles with the distribution C91 [C11 + 2(C32 2C12)].展开更多
In this paper, author obtain sufficient conditions for the boundedness of solutions and the existence of limit cycles of the nonlinear differential system dx/dt = p(y), dy/dt = -q(y)h(x,y) - g(x) without the tradition...In this paper, author obtain sufficient conditions for the boundedness of solutions and the existence of limit cycles of the nonlinear differential system dx/dt = p(y), dy/dt = -q(y)h(x,y) - g(x) without the traditional assumptions 'h(x,y) greater than or equal to 0 for \x\ sufficiently large' and 'integral(0)(+/-infinity) g(x)dx = +infinity'.展开更多
Background:Many disease-specific factors such as muscular weakness,increased muscle stiffness,varying postural strategies,and changes in postural reflexes have been shown to lead to postural instability and fall risk ...Background:Many disease-specific factors such as muscular weakness,increased muscle stiffness,varying postural strategies,and changes in postural reflexes have been shown to lead to postural instability and fall risk in people with Parkinson's disease(PD).Recently,analytical techniques,inspired by the dynamical systems perspective on movement control and coordination,have been used to examine the mechanisms underlying the dynamics of postural declines and the emergence of postural instabilities in people with PD.Methods:A wavelet-based technique was used to identify limit cycle oscillations(LCOs) in the anterior–posterior(AP) postural sway of people with mild PD(n = 10) compared to age-matched controls(n = 10).Participants stood on a foam and on a rigid surface while completing a dual task(speaking).Results:There was no significant difference in the root mean square of center of pressure between groups.Three out of 10 participants with PD demonstrated LCOs on the foam surface,while none in the control group demonstrated LCOs.An inverted pendulum model of bipedal stance was used to demonstrate that LCOs occur due to disease-specific changes associated with PD:time-delay and neuromuscular feedback gain.Conclusion:Overall,the LCO analysis and mathematical model appear to capture the subtle postural instabilities associated with mild PD.In addition,these findings provide insights into the mechanisms that lead to the emergence of unstable posture in patients with PD.展开更多
This paper is concerned with the problem of stability discrimination of limit cycles for piecewise smooth systems.We first establish the Poincaré map near a periodic orbit,and deduce the first order derivative of...This paper is concerned with the problem of stability discrimination of limit cycles for piecewise smooth systems.We first establish the Poincaré map near a periodic orbit,and deduce the first order derivative of the map for general piecewise smooth systems on the plane.Then,we obtain a sufficient condition for determining the stability of limit cycles for these systems.展开更多
In this paper,four limit cycles are constructed for a concrete 3D model of rock-scissorpaper(RSP)game between bacteriocin producing bacteria.This gives not only an affirmative answer to the conjecture of the existence...In this paper,four limit cycles are constructed for a concrete 3D model of rock-scissorpaper(RSP)game between bacteriocin producing bacteria.This gives not only an affirmative answer to the conjecture of the existence of three limit cycles raised by Zhang and Yan(2017),but also extends to an construction of four limit cycles.展开更多
This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0....This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.展开更多
In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 h...In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 hyperbolic saddle points. It is found that this special quintic planar polynomial system has at least four large limit cycles which surround all singular points. By applying the double homoclinic loops bifurcation method and Hopf bifurcation method, we conclude that 28 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful for studying the weakened 16th Hilbert's Problem.展开更多
In the paper we consider a wide class of slow-fast second order systems and give sufficient conditions for the existence of a singular limit cycle related to a homoclinic orbit.
Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and ...Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and that a stable limitt cycle existsaround the singularity (1/2, 2) when K∈(9-δ, 9).展开更多
In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMAT...In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 8 quasi Lyapunov constants are deduced. As a result, the necessary and sufficient conditions to have a center are obtained. The fact that there exist 8 small amplitude limit cycles created from the three-order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems.展开更多
This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous po...This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable.展开更多
文摘In this paper, we have studied several classes of planar piecewise Hamiltonian systems with three zones separated by two parallel straight lines. Firstly, we give the maximal number of limit cycles in these classes of systems with a center in two zones and without equilibrium points in the other zone (or with a center in one zone and without equilibrium points in the other zones). In addition, we also give examples to illustrate that it can reach the maximal number.
基金the National Natural Science Foundation of China(NSFC)under Grant No.12171321.
文摘Gyllenberg and Yan(Discrete Contin Dyn Syst Ser B 11(2):347–352,2009)presented a system in Zeeman’s class 30 of 3-dimensional Lotka-Volterra(3D LV)competitive systems to admit at least two limit cycles,one of which is generated by the Hopf bifurcation and the other is obtained by the Poincaré-Bendixson theorem.Yu et al.(J Math Anal Appl 436:521–555,2016,Sect.3.4)recalculated the first Liapunov coefficient of Gyllenberg and Yan’s system to be positive,rather than negative as in Gyllenberg and Yan(2009),and pointed out that the Poincaré-Bendixson theorem is not applicable for that system.Jiang et al.(J Differ Equ 284:183–218,2021,p.213)proposed an open question:“whether Zeeman’s class 30 can be rigorously proved to admit at least two limit cycles by the Hopf theorem and the Poincaré-Bendixson theorem?”This paper provides four systems in Zeeman’s class 30 to admit at least two limit cycles by the Hopf theorem and the Poincaré-Bendixson theorem and gives an answer to the above question.
文摘In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We prove that (1) possesses at most one limit cycle and give out the necessary and sufficient conditions of existence and uniqueness of limit cycles.
文摘In this paper, we have proved several theorems which guarantee that the Lienard equation has at least one or n limit cycles without using the traditional assumption G Thus some results in [3-5] are extended. The limit cycles can be located by our theorems. Theorems 3 and 4 give sufficient conditions for the existence of n limit cycles having no need of the conditions that the function F(x) is odd or 'nth order compatible with each other' or 'nth order contained in each other'.
文摘In this paper, we investigate the existence of local limit cycles obtained by perturbing degenerate and weak foci of two-dimensional cubic systems of differential equations. In particular, we consider a specific class of such systems where the origin is a degenerate focus. By utilizing a Liapunov function method and the stability results that follow, we first determine constraints on the system to maximize the number of local limit cycles that can be obtained by perturbing the degenerate focus at the origin. Once this is established, we add on the additional assumption that the system has a weak focus at , where , and determine conditions to maximize the number of additional local limit cycles that can be obtained near this fixed point. We will ultimately achieve an example of a cubic system with three local limit cycles about the degenerate focus and one local limit cycle about the weak focus.
基金The NSF of Liaoning provinceFoundation of returned doctors and Foundation of LiaoningEducation Committee.
文摘This paper is concerned with a cubic Kolmogorov system with a solution of central quadratic curve which neither contacts with the coordinate axes, nor passes through the origin. The conclusion is that such a system may possess limit cycles.
文摘It is proved that the quadratic system with a weak focus and a strong focus has at most one limit cycle around the strong focus, and as the weak focus is a 2nd order(or 3rd order) weak focus the quadratic system has at most two(one) limit cycles which have (1,1) distribution ((0,1) distribution).
文摘In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3) distri-butions of limit cycles, we expand the variable regions of parameters ( s , r) and clearly. show them in figure, (c) we study the (1, 3) distributions of limit cycles of one kind quadratic systems with two singular points at the infinite: and (d) we give a generalmethod to discuss the ( 1 ,3) distibutions`of limit cycles of system (1.1) whatever there isone, two or three singular points at the infinite.
文摘In [1], by a transformation on the Liemrd equation system suchihai the trajectories of (1)on both left and right half -planes change into thoseintegral curves of the new equation system merely on the right half-plane,A.F.Hilippov shows that under some certain conditions the stable limit cycles of system (1)must exist.Applying the Filippov’s method on the more generalized systemthis paper provides a sufficient condition for the existence of the stable limit cycles oftvstem (2).
基金Supported by the Natural Science Foundation of China(10802043 10826092) Acknowledgements We are grateful to Prof Li Ji-bin for his kind help and the referees' valuable suggestions.
文摘This paper is concerned with the number and distributions of limit cycles of a cubic Z2-symmetry Hamiltonian system under quintic perturbation.By using qualitative analysis of differential equation,bifurcation theory of dynamical systems and the method of detection function,we obtain that this system exists at least 14 limit cycles with the distribution C91 [C11 + 2(C32 2C12)].
文摘In this paper, author obtain sufficient conditions for the boundedness of solutions and the existence of limit cycles of the nonlinear differential system dx/dt = p(y), dy/dt = -q(y)h(x,y) - g(x) without the traditional assumptions 'h(x,y) greater than or equal to 0 for \x\ sufficiently large' and 'integral(0)(+/-infinity) g(x)dx = +infinity'.
基金the National Science Foundation for partial financial support for this project provided through the grant CMMI-1300632Purdue University for partial financial support for this project through a Research Incentive Grant
文摘Background:Many disease-specific factors such as muscular weakness,increased muscle stiffness,varying postural strategies,and changes in postural reflexes have been shown to lead to postural instability and fall risk in people with Parkinson's disease(PD).Recently,analytical techniques,inspired by the dynamical systems perspective on movement control and coordination,have been used to examine the mechanisms underlying the dynamics of postural declines and the emergence of postural instabilities in people with PD.Methods:A wavelet-based technique was used to identify limit cycle oscillations(LCOs) in the anterior–posterior(AP) postural sway of people with mild PD(n = 10) compared to age-matched controls(n = 10).Participants stood on a foam and on a rigid surface while completing a dual task(speaking).Results:There was no significant difference in the root mean square of center of pressure between groups.Three out of 10 participants with PD demonstrated LCOs on the foam surface,while none in the control group demonstrated LCOs.An inverted pendulum model of bipedal stance was used to demonstrate that LCOs occur due to disease-specific changes associated with PD:time-delay and neuromuscular feedback gain.Conclusion:Overall,the LCO analysis and mathematical model appear to capture the subtle postural instabilities associated with mild PD.In addition,these findings provide insights into the mechanisms that lead to the emergence of unstable posture in patients with PD.
基金supported by the National Natural Science Foundation of China(Grant No.11931016)。
文摘This paper is concerned with the problem of stability discrimination of limit cycles for piecewise smooth systems.We first establish the Poincaré map near a periodic orbit,and deduce the first order derivative of the map for general piecewise smooth systems on the plane.Then,we obtain a sufficient condition for determining the stability of limit cycles for these systems.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20115134110001。
文摘In this paper,four limit cycles are constructed for a concrete 3D model of rock-scissorpaper(RSP)game between bacteriocin producing bacteria.This gives not only an affirmative answer to the conjecture of the existence of three limit cycles raised by Zhang and Yan(2017),but also extends to an construction of four limit cycles.
基金supported by the Natural Science Foundation of Ningxia(2022AAC05044)the National Natural Science Foundation of China(12161069)。
文摘This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.
基金Supported by Fund of Youth of Jiangsu University (Grant No. 05JDG011)National Natural Science Foundation of China (Grant No. 10771088)
文摘In this paper, a Z4-equivariant quintic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the compounded cycle with 4 hyperbolic saddle points. It is found that this special quintic planar polynomial system has at least four large limit cycles which surround all singular points. By applying the double homoclinic loops bifurcation method and Hopf bifurcation method, we conclude that 28 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful for studying the weakened 16th Hilbert's Problem.
基金Natural Science Foundation of Anhui Education Committee(2000J1008)
文摘In the paper we consider a wide class of slow-fast second order systems and give sufficient conditions for the existence of a singular limit cycle related to a homoclinic orbit.
文摘Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and that a stable limitt cycle existsaround the singularity (1/2, 2) when K∈(9-δ, 9).
基金Supported by the Natural Science Foundation of Shandong Province (Grant No. Y2007A17)
文摘In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of quintic polynomial differential system are investigated. With the help of computer algebra system MATHEMATICA, the first 8 quasi Lyapunov constants are deduced. As a result, the necessary and sufficient conditions to have a center are obtained. The fact that there exist 8 small amplitude limit cycles created from the three-order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for quintic Lyapunov systems.
基金supported by National Natural Science Foundation of China (Grant No. 11271252)Ministerio de Economiay Competitidad of Spain (Grant No. MTM2008-03437)+2 种基金 Agència de Gestió d’Ajuts Universitaris i de Recerca of Catalonia (Grant No. 2009SGR410)ICREA Academia,Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110073110054)a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (Grant Nos. FP7-PEOPLE-2012-IRSES-316338 and 318999)
文摘This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable.