Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetar...Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.展开更多
The vertical distribution of aerosols in the troposphere is important for determining their effects on cli- mate. The vertical distribution of aerosols under different atmospheric conditions in the free troposphere wa...The vertical distribution of aerosols in the troposphere is important for determining their effects on cli- mate. The vertical distribution of aerosols under different atmospheric conditions in the free troposphere was di- rectly observed using a surface micro-pulse LIDAR (MPL) and a TP/WVP-3000 microwave radiometer at the Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL, 35.95~N, 104.10~E) in the western Loess Plateau, China, in the spring of 2008. The results showed two possible transportation paths of a sandstorm from May 1 to May 4 in 2008. In one path, sand-dust aerosols were transported toward the east from the Taklimakan Desert to the Badain Jaran Desert and the Tengger Desert by a westerly wind and then toward the southeast to Jingtai and Lanzhou. A weak aerosol index (AI) indicated another possible transport path toward the east from the Taklimakan Desert to the Qaidam Basin and through the Tibetan Plateau eastward to SACOL. The aerosol profile of sandstorm processes over the SACOL area displayed three patterns: a single peak distribution under stable at- mospheric conditions, indicating urban aerosol distribution; an exponential decrease under unstable atmospheric conditions in the presence of a sandstorm; and a slight change in the mixed layer during the first and last stages of the sandstorm, indicative of thorough mixing during lifting and deposition stages. Analyses of the aerosol layer height (ALH) showed that there are two types of ALH diurnal variation. The ALH during the first sandstorm stage was complex and disordered, and affected by atmospheric circulation. While the ALH had obvious diurnal variation in the other stage, the ALH and aerosol extinction coefficient (AEC) had a single peak, and was higher in the af- ternoon and lower in the morning. In the second case the ALH was in agreement with the atmospheric boundary layer height (BLH) variation. As a result of the development of the atmospheric boundary layer (ABL) during day and maintenance at night, ALH during sandstorm-free days showed obvious diurnal variations. Multiple vertical distribu- tion patterns of sand-dust aerosols will result in different climate effects; therefore, the vertical distribution patterns can be used to parameterize climate and aerosol models.展开更多
A study was conducted on aerosol-radiation interactions over six cities in this region within the 2015–2019 period.WRF-Chem simulations on 2017 showed that based on the six-city average,the aerosol load(PM_(2.5)conce...A study was conducted on aerosol-radiation interactions over six cities in this region within the 2015–2019 period.WRF-Chem simulations on 2017 showed that based on the six-city average,the aerosol load(PM_(2.5)concentrations)of 121.9,49.6,43.3,and 66.3μg/m^(3)in January,April,July,and October,mainly lowered the level of downward shortwave radiation by 38.9,24.0,59.1,and 24.4 W/m~2and reduced the boundary layer height by 79.9,40.8,87.4,and 31.0 m,via scattering and absorbing solar radiation.The sensitivity of meteorological changes to identical aerosol loads varied in the order July>January>October and April.Then,the cooling and stabilizing effects of aerosols further led to increases in PM_(2.5),by23.0,3.4,4.6,and 7.3μg/m^(3)respectively in the four months.The sensitivity of the effect of aerosols on PM_(2.5)was greatest in January rather than in July,contrary to the effect on meteorology.Moreover,a negative linear relation was observed between daily BLH reductions and aerosol loads in fall and winter,and between PM_(2.5)increases and aerosol loads in all seasons.With the PM_(2.5)pollution improvements in this region,the aerosol radiative forcing was effectively reduced.This should result in daily BLH increases of 10–24 m in fall and winter,and the estimates in Beijing agreed well with the corresponding results based on AMDAR data.Additionally,the reduction in aerosol radiation effects brought about daily PM_(2.5)decreases of 1.6-2.8μg/m^(3),accounting for 7.0%–17.7%in PM_(2.5)improvements.展开更多
Atmospheric boundary layer height(ABLH)is an important parameter used to depict characteristics of the planetary boundary layer(PBL)in the lower troposphere.The ABLH is strongly associated with the vertical distributi...Atmospheric boundary layer height(ABLH)is an important parameter used to depict characteristics of the planetary boundary layer(PBL)in the lower troposphere.The ABLH is strongly associated with the vertical distributions of heat,mass,and energy in the PBL,and it is a key quantity in numerical simulation of the PBL and plays an essential role in atmospheric environmental assessment.In this paper,various definitions and methods for deriving and estimating the ABLH are summarized,from the perspectives of turbulent motion,PBL dynamics and thermodynamics,and distributions of various substances in the PBL.Different methods for determining the ABLH by means of direct observation and remote sensing retrieval are reviewed,and comparisons of the advantages and disadvantages of these methods are presented.The paper also summarizes the ABLH parameterization schemes,discusses current problems in the estimation of ABLH,and finally points out the directions for possible future breakthroughs in the ABLHrelated research and application.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 91544231)the State Key Research and Development Program of China (Grant No. 2016YFC0200500)+1 种基金Jiangsu Provincial Collaborative Innovation Center of Climate ChangeJun ZOU was also supported by the Program for Outstanding Ph D Candidates of Nanjing University
文摘Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.
基金funded by the National Natural Science Foundation of China(40805009) the Priority Academic Program Development(PAPD) of Jiangsu Higher Education InstitutionsSupport was from SACOL stations(Semi-Arid Climate & Environment Observatory of Lanzhou University)
文摘The vertical distribution of aerosols in the troposphere is important for determining their effects on cli- mate. The vertical distribution of aerosols under different atmospheric conditions in the free troposphere was di- rectly observed using a surface micro-pulse LIDAR (MPL) and a TP/WVP-3000 microwave radiometer at the Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL, 35.95~N, 104.10~E) in the western Loess Plateau, China, in the spring of 2008. The results showed two possible transportation paths of a sandstorm from May 1 to May 4 in 2008. In one path, sand-dust aerosols were transported toward the east from the Taklimakan Desert to the Badain Jaran Desert and the Tengger Desert by a westerly wind and then toward the southeast to Jingtai and Lanzhou. A weak aerosol index (AI) indicated another possible transport path toward the east from the Taklimakan Desert to the Qaidam Basin and through the Tibetan Plateau eastward to SACOL. The aerosol profile of sandstorm processes over the SACOL area displayed three patterns: a single peak distribution under stable at- mospheric conditions, indicating urban aerosol distribution; an exponential decrease under unstable atmospheric conditions in the presence of a sandstorm; and a slight change in the mixed layer during the first and last stages of the sandstorm, indicative of thorough mixing during lifting and deposition stages. Analyses of the aerosol layer height (ALH) showed that there are two types of ALH diurnal variation. The ALH during the first sandstorm stage was complex and disordered, and affected by atmospheric circulation. While the ALH had obvious diurnal variation in the other stage, the ALH and aerosol extinction coefficient (AEC) had a single peak, and was higher in the af- ternoon and lower in the morning. In the second case the ALH was in agreement with the atmospheric boundary layer height (BLH) variation. As a result of the development of the atmospheric boundary layer (ABL) during day and maintenance at night, ALH during sandstorm-free days showed obvious diurnal variations. Multiple vertical distribu- tion patterns of sand-dust aerosols will result in different climate effects; therefore, the vertical distribution patterns can be used to parameterize climate and aerosol models.
基金funded by the National Natural Science Foundation of China (Nos.51978010 and 52022005)。
文摘A study was conducted on aerosol-radiation interactions over six cities in this region within the 2015–2019 period.WRF-Chem simulations on 2017 showed that based on the six-city average,the aerosol load(PM_(2.5)concentrations)of 121.9,49.6,43.3,and 66.3μg/m^(3)in January,April,July,and October,mainly lowered the level of downward shortwave radiation by 38.9,24.0,59.1,and 24.4 W/m~2and reduced the boundary layer height by 79.9,40.8,87.4,and 31.0 m,via scattering and absorbing solar radiation.The sensitivity of meteorological changes to identical aerosol loads varied in the order July>January>October and April.Then,the cooling and stabilizing effects of aerosols further led to increases in PM_(2.5),by23.0,3.4,4.6,and 7.3μg/m^(3)respectively in the four months.The sensitivity of the effect of aerosols on PM_(2.5)was greatest in January rather than in July,contrary to the effect on meteorology.Moreover,a negative linear relation was observed between daily BLH reductions and aerosol loads in fall and winter,and between PM_(2.5)increases and aerosol loads in all seasons.With the PM_(2.5)pollution improvements in this region,the aerosol radiative forcing was effectively reduced.This should result in daily BLH increases of 10–24 m in fall and winter,and the estimates in Beijing agreed well with the corresponding results based on AMDAR data.Additionally,the reduction in aerosol radiation effects brought about daily PM_(2.5)decreases of 1.6-2.8μg/m^(3),accounting for 7.0%–17.7%in PM_(2.5)improvements.
基金Supported by the National Key Research and Development Program of China(2016YFC0203300 and 2017YFC0209600)National Research Program for Key Issues in Air Pollution Control(DQGG0104 and DQGG0106)National Natural Science Foundation of China(91544216).
文摘Atmospheric boundary layer height(ABLH)is an important parameter used to depict characteristics of the planetary boundary layer(PBL)in the lower troposphere.The ABLH is strongly associated with the vertical distributions of heat,mass,and energy in the PBL,and it is a key quantity in numerical simulation of the PBL and plays an essential role in atmospheric environmental assessment.In this paper,various definitions and methods for deriving and estimating the ABLH are summarized,from the perspectives of turbulent motion,PBL dynamics and thermodynamics,and distributions of various substances in the PBL.Different methods for determining the ABLH by means of direct observation and remote sensing retrieval are reviewed,and comparisons of the advantages and disadvantages of these methods are presented.The paper also summarizes the ABLH parameterization schemes,discusses current problems in the estimation of ABLH,and finally points out the directions for possible future breakthroughs in the ABLHrelated research and application.