Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer...Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model with inputs from MODIS and AERONET observations and reanalysis data. Results show that there are significant seasonal and regional differences in climatological mean aerosol optical parameters and ADRF. Higher aerosol optical depth(AOD)occurs in summer and two prominent high aerosol loading centers are observed. Higher single scattering albedo(SSA) in summer is likely associated with the weak absorbing secondary aerosols. SSA is higher in North China during summer but higher in South China during winter. Aerosols induce negative forcing at the top of the atmosphere(TOA) and surface during both winter and summer, which may be responsible for the decrease in temperature and the increase in relative humidity.Values of ADRF at the surface are four times stronger than those at the TOA. Both AOD and ADRF present strong interannual variations; however, their amplitudes are larger in summer. Moreover, patterns and trends of ADRF do not always correspond well to those of AOD. Differences in the spatial distributions of ADRF between strong and weak monsoon years are captured effectively. Generally, the present results justify that to calculate grid-cell ADRF at a large scale using the SBDART model with observational aerosol optical properties and reanalysis data is an effective approach.展开更多
This paper describes the latest progress of a collaborative research program entitled "Modeling Aerosol Climate Effects over Monsoon Asia", under the Climate Sciences agreement between the U.S. Department of Energy ...This paper describes the latest progress of a collaborative research program entitled "Modeling Aerosol Climate Effects over Monsoon Asia", under the Climate Sciences agreement between the U.S. Department of Energy and the Chinese Academy of Sciences(in the early 1980 s, Professor Duzheng YE played a critical role in leading and formalizing the agreement). Here, the rationale and approach for pursuing the program, the participants, and research activities of recent years are first described, and then the highlights of the program's key findings and relevant scientific issues, as well as follow-up studies, are presented and discussed.展开更多
A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 con...A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 concentrations in various distances from the dust sources and the transport pathway of the dust strom. The results showed that both the concentrations and the dry deposition fluxes of PM10 increased over the China seas during the dust event following the passage of a cold front system. The maximum fluxes of PM10 in the Yellow Sea and the East China Sea during the dust event were 5.5 and 8.4 times of those before the event, respectively. However, the temporal variations of the dry deposition fluxes of particulate inorganic nitrogen differed over the Yellow Sea from those over the East China Sea. Nitrate and ammonium in the whole northern China rapidly decreased because of the intrusion of dust-loaded air on 19 March. The dust plume arrived in the Yellow Sea on 20 March, decreasing the particulate inorganic nitrogen in mass concentration accordingly. The minimum dry deposition fluxes of nitrate and ammonium in the Yellow Sea were about 3/5 and 1/6 of those before the dust arrival, respectively. In contrast, when the dust plume crossed over the Yangtze Delta area, it became abundant in nitrate and ammonium and increased the concentrations and dry deposition fluxes of particulate inorganic nitrogen over the East China Sea, where the maximum dry deposition fluxes of nitrate and ammonium increased approximately by 4.1 and 2.6 times of those prior to the dust arrival.展开更多
A model for measuring aerosol mass concentration by an optical particle counter is presented using the conception of the average mass. In this model, to understand the meaning of the pulse height distribution of parti...A model for measuring aerosol mass concentration by an optical particle counter is presented using the conception of the average mass. In this model, to understand the meaning of the pulse height distribution of particles which is used to inverse mass concentration, the relationship among intensity distribution in the optical sensing volume, particle shape, and the pulse height distribution is discussed. To solve the instability of the equivalent factor, a novel two-step calibration method is proposed. The experimental results demonstrate that mass concentrations calculated by the model are in good agreement with those measured by a norm-referenced instrument. For samples of soot and air, the slopes of fitting lines of data points are 0.9582 and 0.9220, and the correlation coefficients are 0.9991 and 0.9965, respectively.展开更多
In this paper, the online Weather Research and Forecasting and Chemistry (WRF/CHEM) model, coupled with urban canopy (UCM) and biogenic-emission models, is used to explore impacts of urban expansion on secondary o...In this paper, the online Weather Research and Forecasting and Chemistry (WRF/CHEM) model, coupled with urban canopy (UCM) and biogenic-emission models, is used to explore impacts of urban expansion on secondary organic aerosols (SOA) formation. Two scenarios of urban maps are used in WRF/CHEM to represent early 1990s (pre-urbanization) and current urban distribution in the Pearl River Delta (PRD). Month-long simulation results using the above land-use scenarios for March 2001 show: (1) urbanization can increase monthly averaged temperatures by about 0.63 ℃, decrease monthly averaged 10-m wind speeds by 38%, increase monthly averaged boundary-layer depths by 80 m, and decrease monthly aver- aged water mixing ratio by 0.2g/kg. (2) Changes in meteorological conditions can result in detectable concentration changes of NOx, VOC, O3 and NO3 radicals. Urbanization decreases surface NOx and VOC concentrations by a maximum of 4 ppbv and 1.5 ppbv, respectively. Surface O3 and NO3 radical concentrations over major cities increase by about 2-4 ppbv and 4-12 pptv, respectively; areas with increasing O3 and NO3 radical concentrations generally coincide with the areas of temperature increase and wind speed reduction where NOx and VOC decrease. (3) Urbanization can induce 9% increase of SOA in Foshan, Zhongshan and west Guangzhou and 3% decrease in Shenzhen and Dongguan. Over PRD major cities, SOA from Aitken mode reduces by 30% but with more than 70% SOA from accumulate mode. Urbanization has stronger influence on SOA formation from Aitken mode. (4) Over the PRD, 55-65% SOA comes from aromatics precursors. Urbanization has strongest influence on aromatics precursors to produce SOA (14% increase), while there is less influence on alkane precursors. Alkene precursors have negative contribution to SOA formation under urbanization situation.展开更多
An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. proc...An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. processed in the JAXA (Japan Aerospace Exploration Agency) Satellite Monitoring for Environmental Studies (JASMES) system with MODIS (Moderate Resolution Imaging Spectroradiometer) observations. was used to quantify the impact of assimilation on forecasts of a severe Asian dust storm during May 10-13. 2011. The modeled bidirectional reflectance function and observed vegetation index employed in JASMES enable AOT retrievals in areas of high surface reflectance, making JASMES effective for dust forecasting and early warning by enabling assimilations in dust storm source regions. Forecasts both with and without assimilation were validated using PM^0 observations from China, Korea, and Japan in the TEMM WG1 dataset. Only the forecast with assimilation successfully captured the contrast between the core and tail of the dust storm by increasing the AOT around the core by 70-150% and decreasing it around the tail by 20-30% in the 18-h forecast. The forecast with assimilation improved the agreement with observed PMlo concentrations, but the effect was limited at downwind sites in Korea and Japan because of the lack of observational constraints for a mis-forecasted dust storm due to cloud.展开更多
基金supported by the Chinese Academy of Sciences Strategic Priority Research Program(Grant No.XDA05100303)the National Natural Science Foundation of China(Grant Nos.41230419,91337213 and 41075041)the Special Funds for Public Welfare of China(Grant No.GYHY201306077)
文摘Taking winter and summer in eastern China as an example application, a grid-cell method of aerosol direct radiative forcing(ADRF) calculation is examined using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART) model with inputs from MODIS and AERONET observations and reanalysis data. Results show that there are significant seasonal and regional differences in climatological mean aerosol optical parameters and ADRF. Higher aerosol optical depth(AOD)occurs in summer and two prominent high aerosol loading centers are observed. Higher single scattering albedo(SSA) in summer is likely associated with the weak absorbing secondary aerosols. SSA is higher in North China during summer but higher in South China during winter. Aerosols induce negative forcing at the top of the atmosphere(TOA) and surface during both winter and summer, which may be responsible for the decrease in temperature and the increase in relative humidity.Values of ADRF at the surface are four times stronger than those at the TOA. Both AOD and ADRF present strong interannual variations; however, their amplitudes are larger in summer. Moreover, patterns and trends of ADRF do not always correspond well to those of AOD. Differences in the spatial distributions of ADRF between strong and weak monsoon years are captured effectively. Generally, the present results justify that to calculate grid-cell ADRF at a large scale using the SBDART model with observational aerosol optical properties and reanalysis data is an effective approach.
基金support by a grant from the Office of Sciences(BER),U.S.DOEsupport from the Key National Basic Research Program on Global Change(Grant No.2013CB955803)to facilitate the visits to Peking University and the Institute of Atmospheric Physics
文摘This paper describes the latest progress of a collaborative research program entitled "Modeling Aerosol Climate Effects over Monsoon Asia", under the Climate Sciences agreement between the U.S. Department of Energy and the Chinese Academy of Sciences(in the early 1980 s, Professor Duzheng YE played a critical role in leading and formalizing the agreement). Here, the rationale and approach for pursuing the program, the participants, and research activities of recent years are first described, and then the highlights of the program's key findings and relevant scientific issues, as well as follow-up studies, are presented and discussed.
基金supported by the National Science Foundation of China (No.40976063)International Cooperative Projects of MOST (No.2010DFA91350)
文摘A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 concentrations in various distances from the dust sources and the transport pathway of the dust strom. The results showed that both the concentrations and the dry deposition fluxes of PM10 increased over the China seas during the dust event following the passage of a cold front system. The maximum fluxes of PM10 in the Yellow Sea and the East China Sea during the dust event were 5.5 and 8.4 times of those before the event, respectively. However, the temporal variations of the dry deposition fluxes of particulate inorganic nitrogen differed over the Yellow Sea from those over the East China Sea. Nitrate and ammonium in the whole northern China rapidly decreased because of the intrusion of dust-loaded air on 19 March. The dust plume arrived in the Yellow Sea on 20 March, decreasing the particulate inorganic nitrogen in mass concentration accordingly. The minimum dry deposition fluxes of nitrate and ammonium in the Yellow Sea were about 3/5 and 1/6 of those before the dust arrival, respectively. In contrast, when the dust plume crossed over the Yangtze Delta area, it became abundant in nitrate and ammonium and increased the concentrations and dry deposition fluxes of particulate inorganic nitrogen over the East China Sea, where the maximum dry deposition fluxes of nitrate and ammonium increased approximately by 4.1 and 2.6 times of those prior to the dust arrival.
基金the Doctor Creation Foundation of Nanjing University of Science and Technology
文摘A model for measuring aerosol mass concentration by an optical particle counter is presented using the conception of the average mass. In this model, to understand the meaning of the pulse height distribution of particles which is used to inverse mass concentration, the relationship among intensity distribution in the optical sensing volume, particle shape, and the pulse height distribution is discussed. To solve the instability of the equivalent factor, a novel two-step calibration method is proposed. The experimental results demonstrate that mass concentrations calculated by the model are in good agreement with those measured by a norm-referenced instrument. For samples of soot and air, the slopes of fitting lines of data points are 0.9582 and 0.9220, and the correlation coefficients are 0.9991 and 0.9965, respectively.
基金supported by the Natural Science Foundation of China (Grant Nos. 40875076 and U0833001)
文摘In this paper, the online Weather Research and Forecasting and Chemistry (WRF/CHEM) model, coupled with urban canopy (UCM) and biogenic-emission models, is used to explore impacts of urban expansion on secondary organic aerosols (SOA) formation. Two scenarios of urban maps are used in WRF/CHEM to represent early 1990s (pre-urbanization) and current urban distribution in the Pearl River Delta (PRD). Month-long simulation results using the above land-use scenarios for March 2001 show: (1) urbanization can increase monthly averaged temperatures by about 0.63 ℃, decrease monthly averaged 10-m wind speeds by 38%, increase monthly averaged boundary-layer depths by 80 m, and decrease monthly aver- aged water mixing ratio by 0.2g/kg. (2) Changes in meteorological conditions can result in detectable concentration changes of NOx, VOC, O3 and NO3 radicals. Urbanization decreases surface NOx and VOC concentrations by a maximum of 4 ppbv and 1.5 ppbv, respectively. Surface O3 and NO3 radical concentrations over major cities increase by about 2-4 ppbv and 4-12 pptv, respectively; areas with increasing O3 and NO3 radical concentrations generally coincide with the areas of temperature increase and wind speed reduction where NOx and VOC decrease. (3) Urbanization can induce 9% increase of SOA in Foshan, Zhongshan and west Guangzhou and 3% decrease in Shenzhen and Dongguan. Over PRD major cities, SOA from Aitken mode reduces by 30% but with more than 70% SOA from accumulate mode. Urbanization has stronger influence on SOA formation from Aitken mode. (4) Over the PRD, 55-65% SOA comes from aromatics precursors. Urbanization has strongest influence on aromatics precursors to produce SOA (14% increase), while there is less influence on alkane precursors. Alkene precursors have negative contribution to SOA formation under urbanization situation.
文摘An ensemble-based assimilation system that used the MASINGAR ink-2 (Model of Aerosol Species IN the Global AtmospheRe Mark 2) dust forecasting model and satellite-derived aerosol optical thickness (AOT) data. processed in the JAXA (Japan Aerospace Exploration Agency) Satellite Monitoring for Environmental Studies (JASMES) system with MODIS (Moderate Resolution Imaging Spectroradiometer) observations. was used to quantify the impact of assimilation on forecasts of a severe Asian dust storm during May 10-13. 2011. The modeled bidirectional reflectance function and observed vegetation index employed in JASMES enable AOT retrievals in areas of high surface reflectance, making JASMES effective for dust forecasting and early warning by enabling assimilations in dust storm source regions. Forecasts both with and without assimilation were validated using PM^0 observations from China, Korea, and Japan in the TEMM WG1 dataset. Only the forecast with assimilation successfully captured the contrast between the core and tail of the dust storm by increasing the AOT around the core by 70-150% and decreasing it around the tail by 20-30% in the 18-h forecast. The forecast with assimilation improved the agreement with observed PMlo concentrations, but the effect was limited at downwind sites in Korea and Japan because of the lack of observational constraints for a mis-forecasted dust storm due to cloud.