A humidity controlled inlet system was developed to measure the hygroscopic growth of aerosol scattering coefficient in conjunction with nephelometry at an urban site of Chinese Academy of Meteorological Sciences (C...A humidity controlled inlet system was developed to measure the hygroscopic growth of aerosol scattering coefficient in conjunction with nephelometry at an urban site of Chinese Academy of Meteorological Sciences (CAMS) in Beijing and a rural site at Shangdianzi Regional Background Air Pollution Monitoring Station (SDZ) outside Beijing during winter, from December 2005 to January 2006. Measurements were carded out at a wavelength of 525 nm with an Ecotech M9003 nephelometer. The hygroscopic growth function (or factor) of the aerosol scattering coefficientf(RH) increased continuously with increasing relative humidity (RH) and showed no obvious "step-like" deliquescent behavior at both sites during the experiment. The average growth factorf(RH) at the SDZ site could reach 1.5 when RH increased from less than 40% to 92%, and to 2.1 at the CAMS site when RH increased from less than 40% to 93%. The average hygroscopic growth factor at a relative humidity of 80%, f(RH = 80 ± 1%), was found to be about 1.26 ±0.15 at CAMS and 1.24 ±0.11 at SDZ. Further analysis indicated that under relatively polluted conditions, the average hygroscopic growth factor was higher at the CAMS site than that at the SDZ site. However, under relatively clean air conditions, the difference between the two sites was small, showing a hygroscopic growth behavior similar to those of burning biomass or blowing dust. These results reflected the different characteristics of aerosol types at the two sites.展开更多
The sensitivity of Doppler wind lidar is an important parameter which affects the performance of Doppler wind lidar. Aerosol scattering ratio, atmospheric temperature, and wind speed obviously affect the measurement o...The sensitivity of Doppler wind lidar is an important parameter which affects the performance of Doppler wind lidar. Aerosol scattering ratio, atmospheric temperature, and wind speed obviously affect the measurement of Doppler wind lidar with iodine filter. We discuss about the relationship between the measurement sensitivity and the above atmospheric parameters. The numerical relationship between them is given through the theoretical simulation and calculation.展开更多
The data, measured by a three-wavelength Integrating Nephelometer over Lanzhou City during the winters of 2001/2002 and 2002/2003 respectively, have been analyzed for investigating the scattering properties of atmos...The data, measured by a three-wavelength Integrating Nephelometer over Lanzhou City during the winters of 2001/2002 and 2002/2003 respectively, have been analyzed for investigating the scattering properties of atmospheric aerosols and exploring their relationship and the status of air pollution. The aerosol particle volume distribution is inverted with the measured spectral scattering coe?cients. The results show that the daily variation of the aerosol scattering coe?cients is in a tri-peak shape. The average ratio of backscattering coe?cient to total scattering coe?cient at 550 nm is 0.158; there exists an excellent correlation between the scattering coe?cients and the concentration of PM10. The average ratio of the concentration of PM10 to the scattering coe?cients is 0.37 g m?2, which is contingent on the optical parameters of aerosol particles such as the size distribution, etc.; an algorithm is developed for inverting the volume distribution of aerosol particles by using the histogram and Monte-Carlo techniques, and the test results show that the inversion is reasonable.展开更多
The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black ...The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black carbon(BC) inclusions),and the single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz-Mie theory.The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally.The multiple scattering characteristics are computed by using the Monte Carlo method.The results show that when the size of the BC aerosol is small,the reflection intensity of the internal mixing model is bigger than that of the external mixing model.However,if the size of the BC aerosol is big,the absorption of the internal mixing model will be larger than that of the external mixing model.展开更多
Assessment of the radiative forcing of aerosols in models still lacks sufficient input data for aerosol hygroscopicity. The light scattering enhancement factor [ f(RH, λ)] is a crucial parameter for describing aeroso...Assessment of the radiative forcing of aerosols in models still lacks sufficient input data for aerosol hygroscopicity. The light scattering enhancement factor [ f(RH, λ)] is a crucial parameter for describing aerosol hygroscopic growth properties.In this paper, we provide a survey of f(RH, λ) studies in China for the past seven years, including instrument developments of humidified nephelometers, ambient f(RH, λ) measurements in China, f(RH, λ) parameterization schemes, and f(RH, λ)applications in aerosol measurements. Comparisons of different f(RH, λ) parameterizations are carried out to check their performance in China using field measurement datasets. We also summary the parameterization schemes for predicting f(RH, λ)with aerosol chemical compositions. The recently developed methods to observe other aerosol properties using f(RH, λ)measurements, such as calculating the aerosol hygroscopicity parameter, cloud condensation nuclei number concentration,aerosol liquid water content, and aerosol asymmetry factor, are introduced. Suggestions for further research on f(RH, λ) in China are given.展开更多
The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneousl...The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis(PCA)is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally,the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.展开更多
Tropospheric ozone (O3), ultraviolet B (UVB) radiation and aerosol light scattering coefficients (SC) were investigated on a cruise ship during the fourth Chinese National Arctic Research Expedition from July 1 ...Tropospheric ozone (O3), ultraviolet B (UVB) radiation and aerosol light scattering coefficients (SC) were investigated on a cruise ship during the fourth Chinese National Arctic Research Expedition from July 1 September 20, 2010. The results showed that O3, UVB and SC decreased with increasing latitude, with minimum values recorded in the central Arctic Ocean. Average O3 concentrations were 15.9 ppbv and 15.1 ppbv in the Bering Sea and Arctic Ocean, respectively. Ozone concentrations increased to 17.5 ppbv in the high Arctic region. Average UVB values were 0.26 W.m-2 and 0.14 W.m-2 in the Bering Sea and Arctic Ocean, respectively. The average SC in the Bering Sea was 4.3 M.m-1, more than twice the value measured in the Arctic Ocean, which had an average value of 1.7 M.m-1. Overall, UVB and SC values were stable in the central Arctic Ocean.展开更多
The first China-US joint dust field experiment was carried out by Lanzhou University, Chinese Academy of Sciences, China Me- teorological Administration, and University of Maryland, the Department of Energy (DOE), U...The first China-US joint dust field experiment was carried out by Lanzhou University, Chinese Academy of Sciences, China Me- teorological Administration, and University of Maryland, the Department of Energy (DOE), USA, from April to June, 2008. The observation sites are located at Zhangye National Climatological Observatory, Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), and Jingtai with the Mobile Facilities of SACOL. The measurements of Particle Soot Absorp- tion Photometer and TSI Integrating Nephelometer are used to analyze the aerosol absorption and scattering characteristics over Zhangye. The results are: the aerosol absorption, total scattering, and backscattering coefficients present similar diurnal variation trends with their bi-peaks at 08:00 and 22!00, and they are generally higher in nighttime than in daytime. Their monthly average coefficient is the highest in April, and the!l drops in succession in May and June. Frequency analysis of aerosol single scattering albedo (SSA) shows that the magnitudes'0f SSA at 450, 550, and 700 nm are mainly within 0.7q3.9. The maximum frequency of SSA at 450 and 700 nm distribute at 0.8, and at 0.85 for 550 nm. The averages of SSA at 450, 550, and 700 nm are 0.72, 0.75, and 0.68, respectively.展开更多
The broadband diffuse radiation method is improved to retrieve the aerosol refractive index imaginary part (AIP) and broadband (400-1000 nm mean) single scattering albedo (SSA). In this method, four sets of SSA ...The broadband diffuse radiation method is improved to retrieve the aerosol refractive index imaginary part (AIP) and broadband (400-1000 nm mean) single scattering albedo (SSA). In this method, four sets of SSA selection criteria are proposed for quality control. The method is used to retrieve AIP, SSA and absorptive optical thickness (AbOT) from routine hourly-exposed pyrheliometer and paranometer measurements over 11 sites (meteorological observatories) in China during 1998-2003. Apart from one suburban site (Ejin Qi), the other urban sites are all located around big or medium cities. As shown in the retrieval results, annual mean SSA during 1998-2003 changes from 0.941 (Wuhan) to 0.849 (Lanzhou), and AIP from 0.0054 to 0.0203. The 11-site average annual mean SSA and AIP are 0.898 and 0.0119, respectively. SSA during winter is smaller for most sites. There is an evidently positive correlation between SSA and aerosol optical thickness (AOT) for all sites. There is also a positive correlation between SSA and relative humidity for most sites, but a negative correlation for a few sites, such as Kashi and ǚrǚmqi in Northwest China.展开更多
This paper is an assessment of radiative forcing caused by atmospheric aerosols in an urban city in West Africa. It is carried out in Ouagadougou in Burkina Faso and is an illustration of the radiative impact in most ...This paper is an assessment of radiative forcing caused by atmospheric aerosols in an urban city in West Africa. It is carried out in Ouagadougou in Burkina Faso and is an illustration of the radiative impact in most of the large Sahelian urban cities which are under the same climatic influences and whose populations present similarities in their socio-economic aspects. Using the GAME code, the radiative forcing was calculated at the top of the atmosphere, in the atmospheric layer and at the earth’s surface. The results showed overall a cooling effect at the top of the atmosphere due to the backscattering in space of the incident radiation, a heating in the atmospheric layer due to the absorption effect and a surface cooling justified by the attenuation of radiation crossing the atmosphere. Using monthly average values of optical properties, vertical temperature and humidity profiles, daily temperatures and surface albedo, the simulation yielded forcing values ranging from -6.77 W/m<sup>2</sup> to -2.56 W/m<sup>2</sup> at the top of the atmosphere, from 15.8 W/m<sup>2</sup> to 34.7 W/m<sup>2</sup> in the atmospheric layer and from -41.00 W/m<sup>2</sup> to -21.68 W/m<sup>2</sup> at the earth’s surface. In addition, the warming was simulated in the first atmospheric layer (in contact with the surface), and the results show values ranging from 0.8<span style="white-space:nowrap;">°</span>C to 1.8<span style="white-space:nowrap;">°</span>C. The study of the annual variability of the results showed a strong correlation between the radiative forcing and the seasonal succession characteristic of the climate in West Africa with the extreme values in the month of March (characteristic of the dry and hot season) and in the month of August (characteristic of the rainy season).展开更多
基金supported by projects from NSFC (40675009)National Key Basic Research project (2006CB403701)+1 种基金Climate Change Research Foundation of CMA (CCSF2005-3-DH03)partly supported by China MOST project(2001DIA10009).
文摘A humidity controlled inlet system was developed to measure the hygroscopic growth of aerosol scattering coefficient in conjunction with nephelometry at an urban site of Chinese Academy of Meteorological Sciences (CAMS) in Beijing and a rural site at Shangdianzi Regional Background Air Pollution Monitoring Station (SDZ) outside Beijing during winter, from December 2005 to January 2006. Measurements were carded out at a wavelength of 525 nm with an Ecotech M9003 nephelometer. The hygroscopic growth function (or factor) of the aerosol scattering coefficientf(RH) increased continuously with increasing relative humidity (RH) and showed no obvious "step-like" deliquescent behavior at both sites during the experiment. The average growth factorf(RH) at the SDZ site could reach 1.5 when RH increased from less than 40% to 92%, and to 2.1 at the CAMS site when RH increased from less than 40% to 93%. The average hygroscopic growth factor at a relative humidity of 80%, f(RH = 80 ± 1%), was found to be about 1.26 ±0.15 at CAMS and 1.24 ±0.11 at SDZ. Further analysis indicated that under relatively polluted conditions, the average hygroscopic growth factor was higher at the CAMS site than that at the SDZ site. However, under relatively clean air conditions, the difference between the two sites was small, showing a hygroscopic growth behavior similar to those of burning biomass or blowing dust. These results reflected the different characteristics of aerosol types at the two sites.
基金the National Natural Science Foundation of China under Grant No.40427001,60578038,and 40505003
文摘The sensitivity of Doppler wind lidar is an important parameter which affects the performance of Doppler wind lidar. Aerosol scattering ratio, atmospheric temperature, and wind speed obviously affect the measurement of Doppler wind lidar with iodine filter. We discuss about the relationship between the measurement sensitivity and the above atmospheric parameters. The numerical relationship between them is given through the theoretical simulation and calculation.
基金the National Natural Science Foundation of China(Grant Nos.49875027,40275039).
文摘The data, measured by a three-wavelength Integrating Nephelometer over Lanzhou City during the winters of 2001/2002 and 2002/2003 respectively, have been analyzed for investigating the scattering properties of atmospheric aerosols and exploring their relationship and the status of air pollution. The aerosol particle volume distribution is inverted with the measured spectral scattering coe?cients. The results show that the daily variation of the aerosol scattering coe?cients is in a tri-peak shape. The average ratio of backscattering coe?cient to total scattering coe?cient at 550 nm is 0.158; there exists an excellent correlation between the scattering coe?cients and the concentration of PM10. The average ratio of the concentration of PM10 to the scattering coe?cients is 0.37 g m?2, which is contingent on the optical parameters of aerosol particles such as the size distribution, etc.; an algorithm is developed for inverting the volume distribution of aerosol particles by using the histogram and Monte-Carlo techniques, and the test results show that the inversion is reasonable.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2009AQ013)
文摘The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black carbon(BC) inclusions),and the single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz-Mie theory.The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally.The multiple scattering characteristics are computed by using the Monte Carlo method.The results show that when the size of the BC aerosol is small,the reflection intensity of the internal mixing model is bigger than that of the external mixing model.However,if the size of the BC aerosol is big,the absorption of the internal mixing model will be larger than that of the external mixing model.
基金supported by the National Natural Science Foundation of China(Grant No.41590872)
文摘Assessment of the radiative forcing of aerosols in models still lacks sufficient input data for aerosol hygroscopicity. The light scattering enhancement factor [ f(RH, λ)] is a crucial parameter for describing aerosol hygroscopic growth properties.In this paper, we provide a survey of f(RH, λ) studies in China for the past seven years, including instrument developments of humidified nephelometers, ambient f(RH, λ) measurements in China, f(RH, λ) parameterization schemes, and f(RH, λ)applications in aerosol measurements. Comparisons of different f(RH, λ) parameterizations are carried out to check their performance in China using field measurement datasets. We also summary the parameterization schemes for predicting f(RH, λ)with aerosol chemical compositions. The recently developed methods to observe other aerosol properties using f(RH, λ)measurements, such as calculating the aerosol hygroscopicity parameter, cloud condensation nuclei number concentration,aerosol liquid water content, and aerosol asymmetry factor, are introduced. Suggestions for further research on f(RH, λ) in China are given.
基金Project supported by the Jiangsu Provincial Natural Science Foundation,China(Grant Nos.BK20170800 and BK20160794)the National Natural Science Foundation of China(Grant No.51606095)
文摘The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis(PCA)is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally,the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.
基金supported by the project"Fourth Chinese National Arctic Research Expedition"
文摘Tropospheric ozone (O3), ultraviolet B (UVB) radiation and aerosol light scattering coefficients (SC) were investigated on a cruise ship during the fourth Chinese National Arctic Research Expedition from July 1 September 20, 2010. The results showed that O3, UVB and SC decreased with increasing latitude, with minimum values recorded in the central Arctic Ocean. Average O3 concentrations were 15.9 ppbv and 15.1 ppbv in the Bering Sea and Arctic Ocean, respectively. Ozone concentrations increased to 17.5 ppbv in the high Arctic region. Average UVB values were 0.26 W.m-2 and 0.14 W.m-2 in the Bering Sea and Arctic Ocean, respectively. The average SC in the Bering Sea was 4.3 M.m-1, more than twice the value measured in the Arctic Ocean, which had an average value of 1.7 M.m-1. Overall, UVB and SC values were stable in the central Arctic Ocean.
基金supported by the National Natural Science Foundation of China (41075104)the Fundamental Research Funds for the Central Universities of Lanzhou University (lzujbky-2011-5)
文摘The first China-US joint dust field experiment was carried out by Lanzhou University, Chinese Academy of Sciences, China Me- teorological Administration, and University of Maryland, the Department of Energy (DOE), USA, from April to June, 2008. The observation sites are located at Zhangye National Climatological Observatory, Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), and Jingtai with the Mobile Facilities of SACOL. The measurements of Particle Soot Absorp- tion Photometer and TSI Integrating Nephelometer are used to analyze the aerosol absorption and scattering characteristics over Zhangye. The results are: the aerosol absorption, total scattering, and backscattering coefficients present similar diurnal variation trends with their bi-peaks at 08:00 and 22!00, and they are generally higher in nighttime than in daytime. Their monthly average coefficient is the highest in April, and the!l drops in succession in May and June. Frequency analysis of aerosol single scattering albedo (SSA) shows that the magnitudes'0f SSA at 450, 550, and 700 nm are mainly within 0.7q3.9. The maximum frequency of SSA at 450 and 700 nm distribute at 0.8, and at 0.85 for 550 nm. The averages of SSA at 450, 550, and 700 nm are 0.72, 0.75, and 0.68, respectively.
文摘The broadband diffuse radiation method is improved to retrieve the aerosol refractive index imaginary part (AIP) and broadband (400-1000 nm mean) single scattering albedo (SSA). In this method, four sets of SSA selection criteria are proposed for quality control. The method is used to retrieve AIP, SSA and absorptive optical thickness (AbOT) from routine hourly-exposed pyrheliometer and paranometer measurements over 11 sites (meteorological observatories) in China during 1998-2003. Apart from one suburban site (Ejin Qi), the other urban sites are all located around big or medium cities. As shown in the retrieval results, annual mean SSA during 1998-2003 changes from 0.941 (Wuhan) to 0.849 (Lanzhou), and AIP from 0.0054 to 0.0203. The 11-site average annual mean SSA and AIP are 0.898 and 0.0119, respectively. SSA during winter is smaller for most sites. There is an evidently positive correlation between SSA and aerosol optical thickness (AOT) for all sites. There is also a positive correlation between SSA and relative humidity for most sites, but a negative correlation for a few sites, such as Kashi and ǚrǚmqi in Northwest China.
文摘This paper is an assessment of radiative forcing caused by atmospheric aerosols in an urban city in West Africa. It is carried out in Ouagadougou in Burkina Faso and is an illustration of the radiative impact in most of the large Sahelian urban cities which are under the same climatic influences and whose populations present similarities in their socio-economic aspects. Using the GAME code, the radiative forcing was calculated at the top of the atmosphere, in the atmospheric layer and at the earth’s surface. The results showed overall a cooling effect at the top of the atmosphere due to the backscattering in space of the incident radiation, a heating in the atmospheric layer due to the absorption effect and a surface cooling justified by the attenuation of radiation crossing the atmosphere. Using monthly average values of optical properties, vertical temperature and humidity profiles, daily temperatures and surface albedo, the simulation yielded forcing values ranging from -6.77 W/m<sup>2</sup> to -2.56 W/m<sup>2</sup> at the top of the atmosphere, from 15.8 W/m<sup>2</sup> to 34.7 W/m<sup>2</sup> in the atmospheric layer and from -41.00 W/m<sup>2</sup> to -21.68 W/m<sup>2</sup> at the earth’s surface. In addition, the warming was simulated in the first atmospheric layer (in contact with the surface), and the results show values ranging from 0.8<span style="white-space:nowrap;">°</span>C to 1.8<span style="white-space:nowrap;">°</span>C. The study of the annual variability of the results showed a strong correlation between the radiative forcing and the seasonal succession characteristic of the climate in West Africa with the extreme values in the month of March (characteristic of the dry and hot season) and in the month of August (characteristic of the rainy season).