期刊文献+
共找到69,086篇文章
< 1 2 250 >
每页显示 20 50 100
Aerosol-Cloud-Precipitation Interactions in a Closed-cell and Non-homogenous MBL Stratocumulus Cloud 被引量:1
1
作者 Xiaojian ZHENG Xiquan DONG +3 位作者 Dale MWARD Baike XI Peng WU Yuan WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2107-2123,共17页
A closed-cell marine stratocumulus case during the Aerosol and Cloud Experiments in the Eastern North Atlantic(ACE-ENA)aircraft field campaign is selected to examine the heterogeneities of cloud and drizzle microphysi... A closed-cell marine stratocumulus case during the Aerosol and Cloud Experiments in the Eastern North Atlantic(ACE-ENA)aircraft field campaign is selected to examine the heterogeneities of cloud and drizzle microphysical properties and the aerosol-cloud-precipitation interactions.The spatial and vertical variabilities of cloud and drizzle microphysics are found in two different sets of flight legs:Leg-1 and Leg-2,which are parallel and perpendicular to the cloud propagation,respectively.The cloud along Leg-2 was close to adiabatic,where cloud-droplet effective radius and liquid water content linearly increase from cloud base to cloud top with less drizzle.The cloud along Leg-1 was sub-adiabatic with lower clouddroplet number concentration and larger cloud-droplet effective,but higher drizzle droplet number concentration,larger drizzle droplet median diameter and drizzle liquid water content.The heavier drizzle frequency and intensity on Leg-1 were enhanced by the collision-coalescence processes within cloud due to strong turbulence.The sub-cloud precipitation rate on Leg-1 was significantly higher than that along Leg-2.As a result,the sub-cloud accumulation mode aerosols and CCN on Leg-1 were depleted,but the coarse model aerosols increased.This further leads to a counter-intuitive phenomenon that the CCN is less than cloud-droplet number concentration for Leg-1.The average CCN loss rates are −3.89 cm^(-3)h^(-1)and −0.77 cm^(-3)h^(-1) on Leg-1 and Leg-2,respectively.The cloud and drizzle heterogeneities inside the same stratocumulus can significantly alter the sub-cloud aerosols and CCN budget.Hence it should be treated with caution in the aircraft assessment of aerosol-cloud-precipitation interactions. 展开更多
关键词 maritime aerosol cloud and drizzle properties coalescence-scavenging effect of the sub-cloud aerosol and CCN and aerosol-cloud-precipitation interactions
下载PDF
Vertical Profile Comparison of Aerosol and Cloud Optical Properties in Dominated Dust and Smoke Regions over Africa Based on Space-Based Lidar
2
作者 Didier Ntwali Getachew Dubache Faustin Katchele Ogou 《Atmospheric and Climate Sciences》 CAS 2022年第3期588-602,共15页
This study evaluates the vertical profiles of aerosol and cloud optical properties in 40 dominated dust and smoke regions in Western-Northern Africa (WNA) and Central-Southern Africa (CSA), respectively, from the surf... This study evaluates the vertical profiles of aerosol and cloud optical properties in 40 dominated dust and smoke regions in Western-Northern Africa (WNA) and Central-Southern Africa (CSA), respectively, from the surface to 10km and from 2008 to 2011 based on LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies). Aerosol extinction (AE), aerosol backscatter (AB), and aerosol depolarization (AD) generally increase from the surface to 1.2 km and decrease from 1.2 km to the upper layers in both WNA and CSA. AE and AB in CSA (maximum of 0.13 km<sup>-1</sup>, 0.14 km<sup>-1</sup>, 0.0021 km<sup>-1</sup>&#8231;sr<sup>-1</sup>, 0.0033 km<sup>-1</sup>&#8231;sr<sup>-1</sup>) are higher than in WNA (maximum of 0.07 km<sup>-1</sup>, 0.08 km<sup>-1</sup>, 0.0017 km<sup>-1</sup>&#8231;sr<sup>-1</sup>, 0.0015 km<sup>-1</sup>&#8231;sr<sup>-1</sup>) at 532 and 1064 nm respectively. AD in WNA (maximum of 0.25) is significantly higher than in CSA (maximum of 0.05). There is a smooth change with the height of cloud extinction and backscatter in WNA and CSA, while there is a remarkable increase of cloud depolarization with height, whereby it is high in CSA and low in WNA due to high and low fraction of cirrus respectively. Altocumulus has the highest extinction in NA (0.0139 km<sup>-1</sup>), CA (0.058 km<sup>-1</sup>), WA (0.013 km<sup>-1</sup>), while low overcast transparent (0.76 km<sup>-1</sup>) below 1 km in SA. The major findings of this study may contribute to the improvement of our understanding of aerosol-cloud interaction studies in dominated dust and smoke aerosol regions. 展开更多
关键词 Vertical Profile Dust aerosols Smoke aerosols clouds AFRICA Lidar Climatology of Vertical aerosol Structure for Space-Based Lidar Simulation Studies (LIVAS)
下载PDF
Analysis on the Distribution Characteristics of Atmospheric Aerosol Particles in Hebei Area in the Cloudy Day Condition 被引量:3
3
作者 孙玉稳 孙霞 +1 位作者 姜岩 李云川 《Meteorological and Environmental Research》 CAS 2010年第7期9-11,共3页
By using the probe data of two sorties airplane in the middle and southern parts of Hebei Province in 2007 spring,the characteristics of atmospheric aerosol particles concentration and size distribution in the area in... By using the probe data of two sorties airplane in the middle and southern parts of Hebei Province in 2007 spring,the characteristics of atmospheric aerosol particles concentration and size distribution in the area in the cloudy day situation were analyzed.The results showed that the overall trend of aerosol particles concentration in the weather systems which included the south branch trough and North China low vortex was the decrease as the height increased.However,if the cirrostratus was in the high altitude,it increased as the height increased.In the bottom of inversion layer,there existed the obvious accumulation of aerosol and cloud droplet.Affected by the complex weather systems,the aerosol particle size distribution presented the multi-peak type for the disturbance of updraft or turbulence. 展开更多
关键词 Hebei Atmospheric aerosol Particle size distribution OBSERVATION China
下载PDF
Aircraft Measurements of Cloud–Aerosol Interaction over East Inner Mongolia 被引量:4
4
作者 Yuhuan Lü Hengchi LEI Jiefan YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第8期983-992,共10页
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed ... To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions. 展开更多
关键词 aircraft observation aerosol warm cloud microphysical properties
下载PDF
Aerosol Properties and Their Impacts on Surface CCN at the ARM Southern Great Plains Site during the 2011 Midlatitude Continental Convective Clouds Experiment 被引量:1
5
作者 Timothy LOGAN Xiquan DONG Baike XI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第2期224-233,共10页
Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Departme... Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration (NccN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009-10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient (~rsp) values less than 20 Mm-1 and Ncct~ values less than 100 cm .3. However, southerly winds over the SGP are responsible for the observed moderate to high correlation (R) among aerosol loading (Crsp 〉 60 Mm 1) and NCCN, carbonaceous chemical species (biomass burning smoke), and precip- itable water vapor. This suggests a common transport mechanism for smoke aerosols and moisture via the Gull' of Mexico, indicating a strong dependence on air mass type. NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGE especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean. 展开更多
关键词 aerosol indirect effect aerosol transport biomass burning smoke
下载PDF
An Evidence of Aerosol Indirect Effect on Stratus Clouds from the Integrated Ground-Based Measurements at the ARM Shouxian Site 被引量:1
6
作者 TANG Jin-Ping WANG Pu-Cai +3 位作者 DUAN Min-Zheng CHEN Hong-Bin XIA Xiang-Ao LIAO Hong 《Atmospheric and Oceanic Science Letters》 2011年第2期65-69,共5页
The aerosol effect on clouds was explored using remote sensing of aerosol and cloud data at Shouxian, China. Non-precipitation, ice-free, and overcast clouds were firstly chosen by a combination of sky im- ages from t... The aerosol effect on clouds was explored using remote sensing of aerosol and cloud data at Shouxian, China. Non-precipitation, ice-free, and overcast clouds were firstly chosen by a combination of sky im- ages from the Total Sky Imager (TSI), cloud base heights from the Ceilometer, and vertical temperature profiles from the Balloon-Borne Sounding System (BBSS). Six cases were chosen in summer, and seven in autumn. The averaged cloud effective radii (re), cloud optical depth (COD), aerosol total light scattering coefficient (a), and liquid water path (LWP) are, respectivey, 6.47 μm, 35.4, 595.9 mm-1, 0.19 mm in summer, and 6.07 μm, 96.0, 471.7 mm-1, 0.37 mm in autumn. The correlation coefficient between re and tc was found to change from negative to positive value as LWP increases. 展开更多
关键词 aerosol warm cloud effective radius opticaldepth liquid water path
下载PDF
Variation of sulfate aerosol concentrations over the western Pacific and their effect on clouds, radiation and precipitation 被引量:1
7
作者 F.Parungo J.Rosinski +1 位作者 M.L.C.Wu C.T.Nagamoto 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第4期521-534,共14页
Under bilateral cooperation between the United States of America and the People's Republic of China, a series of research cruises were conducted over the western Pacific Ocean. It was found that a) the non-sea-sal... Under bilateral cooperation between the United States of America and the People's Republic of China, a series of research cruises were conducted over the western Pacific Ocean. It was found that a) the non-sea-salt sulfate aerosol particles are the major source of cloud condensation nuclei, b) the population of clouds and the total albedo are proportional to the concentration of condensation nuclei and consequently to the concentration of the non-sea-salt aerosol particles, and c) the amount of rainfall is inversely proportional to the concentration of non-sea-salt sulfate aerosol particles. It seems that anthropogenic sulfate aerosol particles affect the regional planetary albedo and climate and that the contribution from biogenically derived sulfate aerosol particles is of lesser importance. 展开更多
关键词 data Variation of sulfate aerosol concentrations over the western Pacific and their effect on clouds radiation and precipitation OVER
下载PDF
Effect of Aerosol Particles on Orographic Clouds:Sensitivity to Autoconversion Schemes
8
作者 Hui XIAO Yan YIN +2 位作者 Pengguo ZHAO Qilin WAN Xiantong LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第2期229-238,共10页
Aerosol particles can serve as cloud condensation nuclei(CCN)to influence orographic clouds.Autoconversion,which describes the initial formation of raindrops from the collision of cloud droplets,is an important proces... Aerosol particles can serve as cloud condensation nuclei(CCN)to influence orographic clouds.Autoconversion,which describes the initial formation of raindrops from the collision of cloud droplets,is an important process for aerosol-cloud-precipitation systems.In this study,seven autoconversion schemes are used to investigate the impact of CCN on orographic warm-phase clouds.As the initial cloud droplet concentration is increased from 100 cm^(-3)to 1000 cm^(-3)(to represent an increase in CCN),the cloud water increases and then the rainwater is suppressed due to a decrease in the autoconversion rate,leading to a spatial shift in surface precipitation.Intercomparison of the results from the autoconversion schemes show that the sensitivity of cloud water,rainwater,and surface precipitation to a change in the concentration of CCN is different from scheme to scheme.In particular,the decrease in orographic precipitation due to increasing CCN is found to range from-87%to-10%depending on the autoconversion scheme.Moreover,the surface precipitation distribution also changes significantly by scheme or CCN concentration,and the increase in the spillover(ratio of precipitation on the leeward side to total precipitation)induced by increased CCN ranges from 10%to 55%under different autoconversion schemes.The simulations suggest that autoconversion parameterization schemes should not be ignored in the interaction of aerosol and orographic cloud. 展开更多
关键词 orographic cloud PRECIPITATION autoconversion aerosol particles
下载PDF
Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in East Asia 被引量:21
9
作者 XIAXiang-ao CHENHong-bin WANGPu-cai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期832-837,共6页
MODIS aerosol retrievals onboard Terra/Aqua and ground truth data obtained from AERONET(Aerosol Robtic Network) solar direct radiance measurements are collocated to evaluate the quality of the former in East Asia. AER... MODIS aerosol retrievals onboard Terra/Aqua and ground truth data obtained from AERONET(Aerosol Robtic Network) solar direct radiance measurements are collocated to evaluate the quality of the former in East Asia. AERONET stations in East Asia are separated into two groups according to their locations and the preliminary validation results for each station. The validation results showed that the accuracy of MODIS aerosol retrievals in East Asia is a little worse than that obtained in other regions such as Eastern U.S., Western Europe, Brazil and so on. The primary reason is due to the improper aerosol model used in MODIS aerosol retrieval algorithm, so it is of significance to characterize aerosol properties properly according to long term ground-based remote sensing or other relevant in situ observations in order to improve MODIS retrievals in East Asia. Cloud contamination is proved to be one of large errors, which is demonstrated by the significant relation between MODIS aerosol retrievals versus cloud fraction, as well as notable improvement of linear relation between satellite and ground aerosol data after potential cloud contamination screened. Hence, it is suggested that more stringent clear sky condition be set in use of MODIS aerosol data. It should be pointed out that the improvement might be offset by other error sources in some cases because of complex relation between different errors. Large seasonal variation of surface reflection and uncertainties associated with it result in large intercepts and random error in MODIS aerosol retrievals in northern inland of East Asia. It remains to be a big problem to retrieve aerosols accurately in inland characterized by relatively larger surface reflection than the requirement in MODIS aerosol retrieval algorithm. 展开更多
关键词 MODIS aerosol retrieval VALIDATION AERONET
下载PDF
Analytical Studies of the Cloud Droplet Spectral Dispersion Influence on the First Indirect Aerosol Effect 被引量:5
10
作者 解小宁 刘晓东 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1313-1319,共7页
Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albed... Atmospheric aerosols (acting as cloud condensation nuclei) can enhance the cloud droplet number concentration and reduce the cloud droplet size, and in turn affect the cloud optical depth, as well as the cloud albedo, and thereby exert a radiative influence on climate (the first indirect aerosol effect). In this paper, based on various relationships between cloud droplet spectral dispersion (c) and cloud droplet number concentration (Nc), we analytically derive the corresponding expressions of the cloud radiative forcing induced by changes in the cloud droplet number concentration. Further quantitative evaluation indicates that the cloud radiative forcing induced by aerosols for the different ^-Nc relationships varies from -29.1% to 25.2%, compared to the case without considering spectral dispersion (e = 0). Our results suggest that an accurate description of e - Nc relationships helps to reduce the uncertainty of the first indirect aerosol effect and advances our scientific understanding of aerosol-cloud-radiation interactions. 展开更多
关键词 spectral dispersion cloud radiative forcing the first indirect aerosol effect
下载PDF
Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles 被引量:1
11
作者 Yuan WANG Jonathan M. VOGEL +7 位作者 Yun LIN Bowen PAN Jiaxi HU Yangang LIU Xiquan DONG Jonathan H. JIANG Yuk L. YUNG Renyi ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第2期234-247,共14页
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative ... Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. In this study, an aerosol-aware WRF model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the US Southern Great Plains. Three simulated cloud ensembles include a low-pressure deep convective cloud system, a collection of less-precipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by several ground-based measurements. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not influence the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with a prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. The simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. 展开更多
关键词 aerosol-cloud-radiation interactions cloud-resolving model cloud microphysics and macrophysics precipita-tion
下载PDF
Effects of Clouds and Aerosols on Surface Radiation Budget Inferred from DOE AMF at Shouxian,China 被引量:2
12
作者 QIU Yu-Jun DONG Xi-Quan +1 位作者 XI Bai-Ke WANG Zhen-Hui 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第1期39-43,共5页
Based on data collected during the first U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) field campaigns at Shouxian, east- ern China in 2008, the effects of clouds and aerosols on the surf... Based on data collected during the first U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) field campaigns at Shouxian, east- ern China in 2008, the effects of clouds and aerosols on the surface radiation budget during the period Octo- ber-December 2008 were studied. The results revealed that the largest longwave (LW), shortwave (SW), and net Aerosol Radiative Effects (AREs) are 12.7, -37.6, and -24.9 W rn-2, indicating that aerosols have LW warming impact, a strong SW cooling effect, and a net cooling ef- fect on the surface radiation budget at Shouxian during the study period 15 October-15 December 2008. The SW cloud radiative forcing (CRF) is -135.1 W m-2, much cooler than ARE (about 3.6 times), however, the LW CRF is 43.6 W m 2, much warmer than ARE, and resulting in a net CRF of-91.5 W m-2, about 3.7 times of net ARE. These results suggest that the clouds have much stronger LW warming effect and SW cooling effect on the surface radiation budget than AREs. The net surface radiation budget is dominated by SW cooling effect for both ARE and CRE. Furthermore, the precipitatable clouds (PCs) have the largest SW cooling effect and LW warming ef- fect, while optically thin high clouds have the smallest cooling effect and LW warming on the surface radiation budget. Comparing the two selected caseds, CloudSat cloud radar reflectivity agrees very well with the AMF (ARM Mobile Facility) WACR (W-band ARM Cloud Radar) measurements, particularly for cirrus cloud case. These result will provide a ground truth to validate the model simulations in the future. 展开更多
关键词 aerosol clouds. ARE. CRF
下载PDF
Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols 被引量:2
13
作者 王海华 孙贤明 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期241-246,共6页
The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black ... The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black carbon(BC) inclusions),and the single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz-Mie theory.The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally.The multiple scattering characteristics are computed by using the Monte Carlo method.The results show that when the size of the BC aerosol is small,the reflection intensity of the internal mixing model is bigger than that of the external mixing model.However,if the size of the BC aerosol is big,the absorption of the internal mixing model will be larger than that of the external mixing model. 展开更多
关键词 aerosols multiple scattering Monte Carlo method phase function
下载PDF
Comparison of Aerosol Effects on Simulated Spring and Summer Hailstorm Clouds 被引量:1
14
作者 Huiling YANG Hui XIAO +3 位作者 Chunwei GUO Guang WEN Qi TANG Yue SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第7期877-893,共17页
Numerical simulations are carried out to investigate the effect of cloud condensation nuclei(CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms. Two hailstorm cases are si... Numerical simulations are carried out to investigate the effect of cloud condensation nuclei(CCN) concentrations on microphysical processes and precipitation characteristics of hailstorms. Two hailstorm cases are simulated, a spring case and a summer case, in a semiarid region of northern China, with the Regional Atmospheric Modeling System. The results are used to investigate the differences and similarities of the CCN effects between spring and summer hailstorms. The similarities are:(1) The total hydrometeor mixing ratio decreases, while the total ice-phase mixing ratio enhances, with increasing CCN concentration;(2) Enhancement of the CCN concentration results in the production of a greater amount of small-sized hydrometeor particles, but a lessening of large-sized hydrometeor particles;(3) As the CCN concentration increases, the supercooled cloud water and rainwater make a lesser contribution to hail, while the ice-phase hydrometeors take on active roles in the growth of hail;(4) When the CCN concentration increases, the amount of total precipitation lessens,while the role played by liquid-phase rainfall in the amount of total precipitation reduces, relatively, compared to that of icephase precipitation. The differences between the two storms include:(1) An increase in the CCN concentration tends to reduce pristine ice mixing ratios in the spring case but enhance them in the summer case;(2) Ice-phase hydrometeor particles contribute more to hail growth in the spring case, while liquid water contributes more in the summer case;(3) An increase in the CCN concentration has different effects on surface hail precipitation in different seasons. 展开更多
关键词 cloud convective aerosols sized mixing aerosol nuclei seasonal polluted accumulated
下载PDF
Airborne Observations of Cloud Condensation Nuclei Spectra and Aerosols over East Inner Mongolia 被引量:3
15
作者 Jiefan YANG Hengchi LEI Yuhuan Lü 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第8期1003-1016,共14页
A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei(CCN)spectra was observed using a passive cloud and aerosol spectrometer(PCASP) and cloud condensation n... A set of vertical profiles of aerosol number concentrations, size distributions and cloud condensation nuclei(CCN)spectra was observed using a passive cloud and aerosol spectrometer(PCASP) and cloud condensation nuclei counter, over the Tongliao area, East Inner Mongolia, China. The results showed that the average aerosol number concentration in this region was much lower than that in heavily polluted areas. Monthly average aerosol number concentrations within the boundary layer reached a maximum in May and a minimum in September, and the variations in CCN number concentrations at different supersaturations showed the same trend. The parameters c and k of the empirical function N = c S^kwere 539 and1.477 under clean conditions, and their counterparts under polluted conditions were 1615 and 1.42. Measurements from the airborne probe mounted on a Yun-12(Y12) aircraft, together with Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories indicated that the air mass from the south of Tongliao contained a high concentration of aerosol particles(1000–2500 cm^(-3)) in the middle and lower parts of the troposphere. Moreover, detailed intercomparison of data obtained on two days in 2010 indicated that the activation efficiency in terms of the ratio of NCCNto N_a(aerosols measured from PCASP) was 0.74(0.4 supersaturations) when the air mass mainly came from south of Tongliao, and this value increased to 0.83 on the relatively cleaner day. Thus, long-range transport of anthropogenic pollutants from heavily polluted mega cities,such as Beijing and Tianjin, may result in slightly decreasing activation efficiencies. 展开更多
关键词 CCN aerosol size distribution aircraft observation
下载PDF
Aerosol Indirect Effects on Warm Clouds in the Grid-Point Atmospheric Model of IAP LASG(GAMIL) 被引量:7
16
作者 Shi Xiang-Jun Wang Bin +3 位作者 Liu Xiao-Hong Wang Ming-Huai Li Li-Juan Dong Li 《Atmospheric and Oceanic Science Letters》 2010年第4期237-241,共5页
Aerosol indirect effects on warm clouds are estimated in the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmosphe... Aerosol indirect effects on warm clouds are estimated in the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics(IAP LASG)(GAMIL) with a new two-moment cloud microphysics scheme using two different physically-based aerosol activation parameterizations:Abdul-Razzak and Ghan,and Nenes and Seinfeld.The annual global mean changes in shortwave cloud forcing from preindustrial times to present day(a measure of the aerosol indirect effects) estimated from these two parameterizations are remarkably similar:0.76 W m?2 with the Abdul-Razzak and Ghan parameterization,and 0.78 W m?2 with the Nenes and Seinfeld parameterization.Physically-based parameterizations can provide robust representations of aerosol effects on droplet nucleation,meaning that aerosol activation is no longer the most uncertain factor in modeling aerosol indirect effects. 展开更多
关键词 aerosol indirect effect droplet nucleation atmospheric model GAMIL
下载PDF
New Progress and Challenges in Cloud–Aerosol–Radiation–Precipitation Interactions:Preface for a Special Issue※
17
作者 Chuanfeng ZHAO Yuan WANG Husi LETU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期1983-1985,共3页
Clouds play essential roles in the Earth’s radiative energy balance and global hydrological cycle.Aerosols,the particles suspended in the air,can change cloud properties by interacting with radiation or serving as cl... Clouds play essential roles in the Earth’s radiative energy balance and global hydrological cycle.Aerosols,the particles suspended in the air,can change cloud properties by interacting with radiation or serving as cloud condensation nuclei.However,the variations in cloud properties subjected to aerosol context,and their impacts on radiation and precipitation,are related to many complicating factors such as land types,meteorological conditions,cloud types,aerosol properties,and their co-varied relationships.Complication of cloud-aerosol-radiation-precipitation interactions makes representation of clouds one of the largest uncertainties in climate models for future climate prediction.It has also become a prevailing topic in atmospheric sciences over the past several decades. 展开更多
关键词 cloud aerosol prevailing
下载PDF
Model Analysis of the Anthropogenic Aerosol Effect on Clouds over East Asia
18
作者 GAO Yi ZHANG Mei-Gen +1 位作者 LIU Xiao-Hong ZHAO Chun 《Atmospheric and Oceanic Science Letters》 2012年第1期1-7,共7页
A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emis... A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm-3 over the ocean and East China, 400 cm-3 over Central and Southwest China, and less than 200 cm-3 over North China. The cloud liquid water path (LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China; the LWP in- creased less than 5 g m-2 or decreased by 5 g m2 over North China. The effective radius (Re) decreased by more than 4 pm over Southwest, Central, and Southeast China and 2 pm over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250400 cm-3, the LWP increased by approximately 30-50 g m 2, and Re decreased by approximately 3 μm over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative m-2 over the ocean and 10 forcing strengthened by 30 W W m-2 over Southeast China, and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by l0 W m-2 over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability. 展开更多
关键词 WRF-Chem aerosol indirect effect cloud properties cloud radiative forcing
下载PDF
Further Laboratory Experiments on Aerosol Scavenging in Mixed Clouds to Assess the Role of Phoretic Forces and Particle Solubility
19
作者 Franco Prodi Gianluca Amirante +2 位作者 Francesco Di Natale Gianni Santachiara Franco Belosi 《Atmospheric and Climate Sciences》 2018年第2期235-247,共13页
Scavenging experiments have been performed in a cloud chamber inside a cold room with different aerosol particles: Paraffin particles, NaCl particles, Magnesium oxide particles, Carbon particles, Sahara dust particles... Scavenging experiments have been performed in a cloud chamber inside a cold room with different aerosol particles: Paraffin particles, NaCl particles, Magnesium oxide particles, Carbon particles, Sahara dust particles. Essentially the experimental tests were carried on following the sequence of operations: the generation of the aerosol particles, their injection in the lower part of the cloud chamber, injection of water droplets in the whole chamber volume, nucleation of ice crystals, collection of ice crystals and their examination as for resulting scavenging efficiency. Evidence is given of the peculiar behaviour of soluble particles, individual and eventually inside mixed particles, leading to very much important scavenging efficiency, probably to be ascribed to aerodynamic capture. The evident peculiar behaviour of deliquescent particles can be oriented towards applications to an efficient abatement of specific effluents, on one side, and to weather modification experiments, both rain enhancement and hail prevention experiments. 展开更多
关键词 aerosol SCAVENGING Phoretic FORCES MIXED cloudS
下载PDF
Numerical study of aerosol effect on three types of clouds and precipitation in Beijing area
20
作者 ZhiGuo Yue XiaoDong Liu ShuYan Liu 《Research in Cold and Arid Regions》 2012年第4期342-350,共9页
Three types of rainfall (storm, moderate and slight rainfall) in the Beijing area were simulated by the Weather Research and Fore- cast (WRF3.2) model coupled with Milbrandt-two-moment cloud microphysics scheme, t... Three types of rainfall (storm, moderate and slight rainfall) in the Beijing area were simulated by the Weather Research and Fore- cast (WRF3.2) model coupled with Milbrandt-two-moment cloud microphysics scheme, to explore the effect of aerosols on clouds and precipitation under continental and maritime aerosol scenarios. Results indicate that an increase of aerosols has various effects on clouds and precipitation. (1) The amount of surface precipitation is obviously affected. With an increase of aerosol con- centration, the 48-hr total precipitation of storm and moderate rainfall decreased by 23% and 16.6%, respectively, and the 24-hr total precipitation of slight rainfall decreased by 14.0%. (2) The distribution of surface precipitation is also clearly affected. The average precipitation for a rain storm increases in most parts of western Beijing and decreases by more than 20 mm in most parts of eastern Beijing with increasing aerosol concentration. The average precipitation of moderate rainfall decreases by 0.1-5 mm in most parts of the Beijing area. The effect of increased aerosol concentration is weak for slight rainfall distribution in the study area. (3) With an increase of aerosol concentration, a narrower width and lower precipitation peak value are found in the storm rainfall, and its duration is prolonged for the high aerosol concentration. An earlier precipitation termination of moderate rainfall is found with increasing aerosol concentration. (4) The upper-air hydrometeors vary with aerosol concentration, For storm and moderate rainfall, significantly higher cloud water concentration and lower rain water were found under the continental aerosol scenario. 展开更多
关键词 aerosol Beijing area clouds and precipitation indirect effect numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部