期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Optimization of Fixture Number in Large Thin-Walled Parts Assembly Based on IPSO
1
作者 Changhui Liu Jing Wang +3 位作者 Ying Zheng Ke Jin Jianbo Yu Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期213-227,共15页
There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to... There are lots of researches on fixture layout optimization for large thin-walled parts.Current researches focus on the positioning problem,i.e.,optimizing the positions of a constant number of fixtures.However,how to determine the number of fixtures is ignored.In most cases,the number of fixtures located on large thin-walled parts is determined based on engineering experience,which leads to huge fixture number and extra waste.Therefore,this paper constructs an optimization model to minimize the number of fixtures.The constraints are set in the optimization model to ensure that the part deformation is within the surface profile tolerance.In addition,the assembly gap between two parts is also controlled.To conduct the optimization,this paper develops an improved particle swarm optimization(IPSO)algorithm by integrating the shrinkage factor and adaptive inertia weight.In the algorithm,particles are encoded according to the fixture position.Each dimension of the particle is assigned to a sub-region by constraining the optional position range of each fixture to improve the optimization efficiency.Finally,a case study on ship curved panel assembly is provided to prove that our method can optimize the number of fixtures while meeting the assembly quality requirements.This research proposes a method to optimize the number of fixtures,which can reduce the number of fixtures and achieve deformation control at the same time. 展开更多
关键词 Assembly quality Large thin-walled parts Fixture layout PSO FEM
下载PDF
Development of Fixture Layout Optimization for Thin-Walled Parts:A Review
2
作者 Changhui Liu Jing Wang +3 位作者 Binghai Zhou Jianbo Yu Ying Zheng Jianfeng Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期15-39,共25页
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit... An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field. 展开更多
关键词 thin-walled parts Assembly quality Fixture layout optimization Modeling methods Optimization algorithms
下载PDF
Recent progress in flexible supporting technology for aerospace thin-walled parts:A review 被引量:9
3
作者 Yan BAO Bin WANG +2 位作者 Zengxu HE Renke KANG Jiang GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期10-26,共17页
Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,whic... Thin-walled parts are widely used in the aerospace industry owing to their light weight and high specific strength.However,due to the low rigidity of thin-walled parts,elastic deformation and chatter easily occur,which seriously affect the machining accuracy and workpiece surface quality.To solve this problem,several supporting technologies have been reported in recent years.This paper reviews the recent research progress of flexible supporting technologies in the aerospace field by classifying them based on different principles and characteristics.The principle,progress,advantages,and limitations of the technologies are expounded by systematic comparison and summarized.Finally,the challenges and future development trends of flexible supporting technology,which will provide guidelines for further research,are discussed. 展开更多
关键词 aerospace Chatter DEFORMATION Flexible support Low rigidity thin-walled
原文传递
Optimization of material removal strategy in milling of thin-walled parts 被引量:1
4
作者 李继博 张定华 吴宝海 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期108-112,共5页
The optimal material removal strategy can improve a geometric accuracy and surface quality of thin-walled parts such as turbine blades and blisks in high-speed ball end milling.The dominant conception in the material ... The optimal material removal strategy can improve a geometric accuracy and surface quality of thin-walled parts such as turbine blades and blisks in high-speed ball end milling.The dominant conception in the material removal represents the persistence of the workpiece cutting stiffness in operation to advance the machining accuracy and machining efficiency.On the basis of theoretical models of cutting stiffness and deformation,finite element method (FEM) is applied to calculate the virtual displacements of the thin-walled part under given virtual loads at the nodes of the discrete surface.With the reference of deformation distribution of the thin-walled part,the milling material removal strategy is optimized to make the best of bracing ability of still uncut material.This material removal method is summarized as the lower stiffness region removed firstly and the higher stiffness region removed next.Analytical and experimental results show the availability,which has been verified by the blade machining test in this work,for thin-walled parts to reduce cutting deformation and meliorate machining quality. 展开更多
关键词 surface stiffness distribution end milling thin-walled parts removal strategy cutting stiffness
下载PDF
Initial residual stress experiment and simulation of thin-walled parts for layer removal method
5
作者 刘宇男 Wang Min +2 位作者 Zan Tao Gao Xiangsheng Zhang Yanlin 《High Technology Letters》 EI CAS 2018年第1期75-81,共7页
Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial r... Thin-walled parts have low stiffness characteristic. Initial residual stress of thin-walled blanks is an important influence factor on machining stability. The present work is to verify the feasibility of an initial residual stress measurement of layer removal method. According to initial residual stress experiment for casting ZL205 A aluminum alloy tapered thin-walled blank by a common method,namely hole-drilling method,three finite element models with initial residual stress are established to simulate the layer removal method in ABAQUS and ANSYS software. By analyzing the results of simulation and experiments,the cutting residual stress inlayer removal process has a significant effect on measurement results. Reducing cutting residual stress is helpful to improve accuracy of layer removal method. 展开更多
关键词 INITIAL RESIDUAL stress thin-walled parts layer.removal method FINITE element
下载PDF
Mapping relationship analysis of welding assembly properties for thin-walled parts with finite element and machine learning algorithm
6
作者 Pan Minghui Liao Wenhe +1 位作者 Xing Yan Tang Wencheng 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期126-136,共11页
The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The ... The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future. 展开更多
关键词 parallel T-shaped thin-walled parts welding assembly property finite element analysis mapping relationship machine learning algorithm
下载PDF
A model of deformation of thin-wall surface parts during milling machining process 被引量:11
7
作者 王凌云 黄红辉 +2 位作者 Rae W.WEST 李厚佳 杜继涛 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1107-1115,共9页
A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The alumi... A three-dimensional finite element model was established for the milling of thin-walled parts. The physical model of the milling of the part was established using the AdvantEdge FEM software as the platform. The aluminum alloy impeller was designated as the object to be processed and the boundary conditions which met the actual machining were set. Through the solution, the physical quantities such as the three-way cutting force, the tool temperature, and the tool stress were obtained, and the calculation of the elastic deformation of the thin-walled blade of the free-form surface at the contact points between the tool and the workpiece was realized. The elastic deformation law of the thin-walled blade was then predicted. The results show that the maximum deviation between the predicted value and the actual measured machining value of the elastic deformation was 26.055 μm; the minimum deviation was 2.011 μm, with the average deviation being 10.154 μm. This shows that the prediction is in close agreement with the actual result. 展开更多
关键词 thin-walled surface parts milling force elastic deformation finite element model
下载PDF
Numerical simulation analysis for deformation deviation and experimental verification for an antenna thin-wall parts considering riveting assembly with finite element method 被引量:6
8
作者 PAN Ming-hui TANG Wen-cheng +1 位作者 XING Yan NI Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期60-77,共18页
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr... In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future. 展开更多
关键词 thin-wall parts assembly assembly deformation deviation theoretical deformation model finite element simulation measuring experiment
下载PDF
Welding thermal characteristics analysis with numerical simulation for thin-wall parts assembly under different conditions 被引量:1
9
作者 潘明辉 汤文成 幸研 《Journal of Southeast University(English Edition)》 EI CAS 2018年第2期199-207,共9页
In order to analyze the welding thermal characteristics problem,the multiscale finite element(FE)model of T-shape thin-wall assembly structure for different thicknesses and the heat source model are established to emp... In order to analyze the welding thermal characteristics problem,the multiscale finite element(FE)model of T-shape thin-wall assembly structure for different thicknesses and the heat source model are established to emphatically study their welding temperature distributions under different conditions.Simultaneously,different welding technology parameters and welding directions are taken into account,and the fillet weld for different welding parameters is employed on the thin-wall parts.Through comparison analysis,the results show that different welding directions,welding thicknesses and welding heat source parameters have a certain impact on the temperature distribution.Meanwhile,for the thin-wall assembly structure of the same thickness,when the heat source is moving,the greater the moving speed,the smaller the heating area,and the highest temperature will decrease.Therefore,the welding temperature field distribution can be altered by adjusting welding parameters,heat source parameters,welding thickness and welding direction,which is conducive to reducing welding deformation and choosing an appropriate and optimal welding thickness of thin-wall parts and relative welding process parameters,thus improving thin-wall welding structure assembly precision in the actual large-size welding structure assembly process in future. 展开更多
关键词 welding assembly thin-wall parts thermal characteristics heat source model welding direction
下载PDF
Deformation Analysis and Fixture Design of Thin-walled Cylinder in Drilling Process Based on TRIZ Theory 被引量:2
10
作者 Fulin WANG Bo SHENG +3 位作者 Yongwen WU Jiawang LI Zhou XU Zhaoxia ZHU 《Mechanical Engineering Science》 2021年第1期57-64,共8页
Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling p... Thin-walled cylindrical workpiece is easy to deform during machining and clamping processes due to the insufficient rigidi.Moreover,it’s also difficult to ensure the perpendicularity of flange holes during drilling process.In this paper,the element birth and death technique is used to obtain the axial deformation of the hole through finite element simulation.The measured value of the perpendicularity of the hole was compared with the simulated value to verify then the rationality of the simulation model.To reduce the perpendicularity error of the hole in the drilling process,the theory of inventive principle solution(TRIZ)was used to analyze the drilling process of thin-walled cylinder,and the corresponding fixture was developed to adjust the supporting surface height adaptively.Three different fixture supporting layout schemes were used for numerical simulation of drilling process,and the maximum,average and standard deviation of the axial deformation of the flange holes and their maximum hole perpendicularity errors were comparatively analyzed,and the optimal arrangement was optimized.The results show that the proposed deformation control strategy can effectively improve the drilling deformation of thin-walled cylindrical workpiece,thereby significantly improving the machining quality of the parts. 展开更多
关键词 thin-walled cylindrical parts FIXTURE Deformation analysis DRILLING TRIZ theory
下载PDF
Relative Varying Dynamics Based Whole Cutting Process Optimization for Thin‑walled Parts
11
作者 Yuyang Tang Jun Zhang +3 位作者 Jia Yin Lele Bai Huijie Zhang Wanhua Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期194-206,共13页
Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative... Thin-walled parts are typically difficult-to-cut components due to the complex dynamics in cutting process.The dynamics is variant for part during machining,but invariant for machine tool.The variation of the relative dynamics results in the difference of cutting stage division and cutting parameter selection.This paper develops a novel method for whole cutting process optimization based on the relative varying dynamic characteristic of machining system.A new strategy to distinguish cutting stages depending on the dominated dynamics during machining process is proposed,and a thickness-dependent model to predict the dynamics of part is developed.Optimal cutting parameters change with stages,which can be divided by the critical thickness of part.Based on the dynamics comparison between machine tool and thickness-varying part,the critical thicknesses are predicted by an iterative algorithm.The proposed method is validated by the machining of three benchmarks.Good agreements have been obtained between prediction and experimental results in terms of stages identification,meanwhile,the optimized parameters perform well during the whole cutting process. 展开更多
关键词 thin-walled parts Varying dynamics Frequency response function Whole cutting process OPTIMIZATION
下载PDF
Elliptical vibration cutting of large-size thin-walled curved surface parts of pure iron by using diamond tool with active cutting edge shift
12
作者 Zhenhua JIAO Renke KANG +1 位作者 Dongxing DU Jiang GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期402-419,共18页
Large-size thin-walled curved surface parts of pure iron are crucial in aerospace,national defense,energy and precision physical experiments.However,the high machining accuracy and surface quality are difficult to ach... Large-size thin-walled curved surface parts of pure iron are crucial in aerospace,national defense,energy and precision physical experiments.However,the high machining accuracy and surface quality are difficult to achieve due to the serious tool wear and deformation when machining the parts with conventional cutting tools.In this paper,an elliptical vibration cutting(EVC)with active cutting edge shift(ACES)based on a long arbor vibration device is proposed for ultraprecision machining the pure iron parts by using diamond tool.Compared with cutting at a fixed cutting edge,the influence of ACES on the EVC was analyzed.Experiments in EVC of pure iron with ACES were conducted.The evolutions of the surface roughness,surface topography,and chip morphology with tool wear in EVC with ACES are revealed.The reasonable parameters of ultraprecision machining the pure iron parts by EVC with ACES were determined.It shows that the ACES has a slight influence on the machined surface roughness and surface topography.The diamond tool life can be significantly prolonged in EVC of pure iron with ACES than that with a fixed cutting edge,so that high profile accuracy and surface quality could be obtained even at higher nominal cutting speed.A typical thin-walled curved surface pure iron part with diameter φ240 mm,height 122 mm,and wall thickness 2 mm was fabricated by the presented method,and its profile error and surface roughness achieved PV 2.2μm and Ra less than 50 nm,respectively. 展开更多
关键词 Curved surface Diamond tool Elliptical vibration cutting Pure iron thin-walled parts
原文传递
航空薄壁零件切削加工技术研究进展
13
作者 李忠群 丁鹏 +2 位作者 杨雨 欧阳芷楠 曾朝朋 《航空制造技术》 CSCD 北大核心 2024年第7期38-53,共16页
航空薄壁零件的加工精度和效率直接影响飞机的性能和可靠性。本文系统综述了航空薄壁零件切削加工技术,包括夹具技术、加工变形预测与控制方法、颤振预测与控制技术,以及数字孪生技术应用等多个方面。夹具技术详细研究了各种夹具的操作... 航空薄壁零件的加工精度和效率直接影响飞机的性能和可靠性。本文系统综述了航空薄壁零件切削加工技术,包括夹具技术、加工变形预测与控制方法、颤振预测与控制技术,以及数字孪生技术应用等多个方面。夹具技术详细研究了各种夹具的操作模式、结构特点、功能与应用等方面。变形预测与控制分析了薄壁件加工变形原因,并介绍了相关的控制技术和方法。颤振预测与控制探讨了切削过程稳定性分析技术和颤振控制技术,包括在线监测与识别、主动与被动控制技术和方法。数字孪生技术的应用部分介绍了该技术在薄壁件加工中的实际应用情况。通过对航空薄壁零件加工技术的系统综述,全面深入地介绍了相关内容,可为学者们的研究提供参考与指导。 展开更多
关键词 航空薄壁零件 变形预测与控制 颤振 数字孪生 夹具
下载PDF
标准件自动分拣设备的研发与应用
14
作者 姚景奇 段奇锐 +2 位作者 朱鹏博 宋玥 刘星 《机械管理开发》 2024年第9期330-332,共3页
标准件自动分拣设备是一种用于标准件生产齐套的自动化设备,其主要面向航天产品总装生产准备过程中标准件的单发齐套工作。该设备能够完成按照各个工序设定的单件产品所需标准件的自动分拣、封装及喷码工作。此设备的应用极大提高标准... 标准件自动分拣设备是一种用于标准件生产齐套的自动化设备,其主要面向航天产品总装生产准备过程中标准件的单发齐套工作。该设备能够完成按照各个工序设定的单件产品所需标准件的自动分拣、封装及喷码工作。此设备的应用极大提高标准件生产齐套工作效率和准确度,大幅减少手工作业工作量,同时有效控制多余物。 展开更多
关键词 航天产品 标准件 自动分拣 封装 喷码
下载PDF
航空航天薄壁件铣削过程加工状态监测研究进展 被引量:4
15
作者 岳彩旭 周天祥 +2 位作者 秦怡源 王乐 胡德生 《航空制造技术》 CSCD 北大核心 2023年第3期30-43,共14页
对切削加工状态进行精准监测,是实现航空航天薄壁件加工变形控制的重要保障。围绕航空航天薄壁件铣削加工状态监测的最新研究进展进行了评述,详细介绍了建立加工状态监测模型的关键技术与方法,包括加工信息采集处理、特征提取和特征融... 对切削加工状态进行精准监测,是实现航空航天薄壁件加工变形控制的重要保障。围绕航空航天薄壁件铣削加工状态监测的最新研究进展进行了评述,详细介绍了建立加工状态监测模型的关键技术与方法,包括加工信息采集处理、特征提取和特征融合。归纳了学者们在薄壁件加工过程中对刀具磨破损、铣削颤振、铣削变形等具体状态监测的研究进展。基于数字孪生技术,构建了面向薄壁件铣削加工状态监测的优化系统。最后,根据现阶段本领域发展状况对薄壁件铣削加工状态监测进行了展望。 展开更多
关键词 航空航天薄壁件 特征提取 刀具磨破损 铣削颤振 铣削变形 数字孪生
下载PDF
机械/磁流变复合装夹系统实验教学平台及应用
16
作者 江小辉 李郝林 +1 位作者 钱炜 郭淼现 《实验室科学》 2023年第2期29-35,共7页
为满足当前针对国内学生及留学生开设机械制造技术基础课程教学需要,提升高等教育制造类课程教学水平,建立了以航天薄壁件为对象的柔性夹具装夹系统教学实验平台。通过构建机械/磁流变复合夹具和柔性装夹评价软件系统,采用磁流变液优化... 为满足当前针对国内学生及留学生开设机械制造技术基础课程教学需要,提升高等教育制造类课程教学水平,建立了以航天薄壁件为对象的柔性夹具装夹系统教学实验平台。通过构建机械/磁流变复合夹具和柔性装夹评价软件系统,采用磁流变液优化配比、多原理磁流变夹具系统实验,最后以实验案例评价磁流变夹具动力学特性及验证装夹合理性。本航天薄壁件机械/磁流变复合装夹教学实验平台为推进中国制造2025和机械制造技术课程教学内容改革提供借鉴。 展开更多
关键词 机械/磁流变复合夹具 机械制造技术 航天薄壁件 动力学特性 实验教学
下载PDF
基于3D打印技术的复杂零件制造研究
17
作者 郭娟 《农机使用与维修》 2023年第7期54-56,共3页
综述了基于3D打印技术的复杂零件制造研究的最新进展,以3D打印技术的基本原理和发展历程为研究背景,对3D打印技术在复杂零件制造方面的应用进行了详细介绍,同时分析3D打印技术在生物医学领域、航空航天领域、汽车制造领域等方面的应用案... 综述了基于3D打印技术的复杂零件制造研究的最新进展,以3D打印技术的基本原理和发展历程为研究背景,对3D打印技术在复杂零件制造方面的应用进行了详细介绍,同时分析3D打印技术在生物医学领域、航空航天领域、汽车制造领域等方面的应用案例,指出3D打印技术在各个领域发展过程中面临的挑战和发展趋势。研究结果旨在为提高3D打印技术的发展与应用提供参考。 展开更多
关键词 3D打印技术 复杂零件制造 大型结构件 生物医学 航空航天
下载PDF
航空零件表面处理过程中孔保护的方法
18
作者 杨含 乔永莲 +2 位作者 刘晓君 徐健 马雯雯 《电镀与涂饰》 CAS 北大核心 2023年第1期60-65,共6页
针对传统航空零件表面处理过程中孔保护材料和方法的保护效果不佳的问题,通过使用由耐高温、耐强酸及耐强碱材料制成的T型硅橡胶塞、柱型硅橡胶塞、机械膨胀塞,以及刷涂可剥离保护胶,在表面处理过程中对各类孔进行保护,通过目视检查和... 针对传统航空零件表面处理过程中孔保护材料和方法的保护效果不佳的问题,通过使用由耐高温、耐强酸及耐强碱材料制成的T型硅橡胶塞、柱型硅橡胶塞、机械膨胀塞,以及刷涂可剥离保护胶,在表面处理过程中对各类孔进行保护,通过目视检查和装配验证评价了各自的保护效果。结果表明,上述4种方法对各类孔都有很好的保护效果。 展开更多
关键词 航空零件 表面处理 保护 硅橡胶塞 机械膨胀塞 可剥离保护胶
下载PDF
30CrMnSiA合金钢航天零件表面离子液体电镀铝的性能 被引量:2
19
作者 宋启良 李吉丹 +4 位作者 郑玉杰 张联英 孙传伟 韩涛 宋强 《电镀与涂饰》 CAS 北大核心 2023年第19期13-20,共8页
采用含AlCl3与1−乙基−3−甲基咪唑氯盐的离子液体对航天用30CrMnSiA材质的紧固垫片和连接器电镀Al。通过金相显微镜、扫描电镜(SEM)和能谱仪(EDS)分析了Al镀层的微观形貌和元素组成,并检测了镀Al试样的相关性能。结果表明,Al镀层分布均匀... 采用含AlCl3与1−乙基−3−甲基咪唑氯盐的离子液体对航天用30CrMnSiA材质的紧固垫片和连接器电镀Al。通过金相显微镜、扫描电镜(SEM)和能谱仪(EDS)分析了Al镀层的微观形貌和元素组成,并检测了镀Al试样的相关性能。结果表明,Al镀层分布均匀,无漏镀、起皮等缺陷,晶粒大小一致,维氏硬度为35~40 HV,结合力良好,中性盐雾试验96 h无白锈、336 h无红锈,耐磨性良好,无氢脆现象,综合性能满足航天产品的要求。 展开更多
关键词 航天零件 合金结构钢 电镀铝 离子液体 氢脆
下载PDF
航空航天复杂曲面构件精密成形技术的研究进展 被引量:24
20
作者 张士宏 程明 +1 位作者 宋鸿武 徐勇 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第1期1-11,共11页
对于当前航空航天飞行器中广泛存在的金属复杂曲面构件的高性能发展需求,提出研发针对叶片类零件、大口径薄壁弯管以及复杂钣金构件的楔横轧短流程制坯、颗粒填料辅助推弯成形以及高能率冲击液压成形等精密成形技术,分别从工艺原理、设... 对于当前航空航天飞行器中广泛存在的金属复杂曲面构件的高性能发展需求,提出研发针对叶片类零件、大口径薄壁弯管以及复杂钣金构件的楔横轧短流程制坯、颗粒填料辅助推弯成形以及高能率冲击液压成形等精密成形技术,分别从工艺原理、设备、模具及典型零部件应用等方面对上述技术的研究进展进行阐述和介绍。 展开更多
关键词 航空航天 发动机叶片 大口径薄壁弯管 复杂钣金构件 精密成形技术
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部