A novel method for the separation/analysis rhodamine B has been described. The ionic liquid (1-tetradecyl-3-methylimidazolium bromide)/anion surfactant (sodium dodecyl sulfate)/NaCl two-phase systems (ATPSs) is presen...A novel method for the separation/analysis rhodamine B has been described. The ionic liquid (1-tetradecyl-3-methylimidazolium bromide)/anion surfactant (sodium dodecyl sulfate)/NaCl two-phase systems (ATPSs) is presented as a simple, rapid and effective sample pretreatment technique coupled with ultraviolet spectrometry for analysis rhodamine B in soft drink. The effects of parameters on the ATPSs extraction of rhodamine B such as amount of surfactant, ionic liquid and salt, pH, temperature, stabilization and centrifugal time have been studied in details. Under the optimized conditions, the linear range of calibration curve for rhodamine B was 0.05 - 7.0 μg·mL-1 and the detection limit was 3.2 ng·mL-1. The phase equilibrium and the mechanism of phase separation for ATPSs have been discussed. This method has been applied to the determination of rhodamine B in soft drink.展开更多
The aqueous two-phase system(ATPS)is an all-aqueous system fabricated from two immiscible aqueous phases.It is spontaneously assembled through physical liquid-liquid phase separation(LLPS)and can create suitable templ...The aqueous two-phase system(ATPS)is an all-aqueous system fabricated from two immiscible aqueous phases.It is spontaneously assembled through physical liquid-liquid phase separation(LLPS)and can create suitable templates like the multicompartment of the intracellular environment.Delicate structures containing multiple compartments make it possible to endow materials with advanced functions.Due to the properties of ATPSs,ATPS-based drug delivery systems exhibit excellent biocompatibility,extraordinary loading efficiency,and intelligently controlled content release,which are particularly advantageous for delivering drugs in vivo.Therefore,we will systematically review and evaluate ATPSs as an ideal drug delivery system.Based on the basic mechanisms and influencing factors in forming ATPSs,the transformation of ATPSs into valuable biomaterials is described.Afterward,we concentrate on the most recent cutting-edge research on ATPS-based delivery systems.Finally,the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.展开更多
The synthesis route was investigated and optimized for the preparation of iminodiacetic acid-polyethylene glycol (IDA-PEG) for immobilized metal ion affinity partitioning in aqueous two-phase systems. IDA-PEG was synt...The synthesis route was investigated and optimized for the preparation of iminodiacetic acid-polyethylene glycol (IDA-PEG) for immobilized metal ion affinity partitioning in aqueous two-phase systems. IDA-PEG was synthesized from PEG in two steps by the reaction of iminodiacetic acid with a monosubstituted derivative of epichlorohydrin-activated PEG. The Cu2+ content combined with IDA-PEG was determined by atomic absorption spectrometry as 0.5 mol·mol^-1 (PEG). Furthermore, the affinity partitioning behavior of lactate dehydrogenase in polyethylene glycol/hydroxypropyl starch aqueous two-phase systems was studied to clarify the affinity effect of the Cu(Ⅱ)-IDA-PEG.展开更多
Objective To optimize the extracting technology of assessing the maximum yield of phenolic compounds (PC) from Inonotus obliquus by single factor experiments and orthogonal array design methods through aqueous two-pha...Objective To optimize the extracting technology of assessing the maximum yield of phenolic compounds (PC) from Inonotus obliquus by single factor experiments and orthogonal array design methods through aqueous two-phase systems combined with ultrasonic extraction. Methods The range of the independent variables, namely levels of acetone and ammonium sulfate, and ultrasonic time were identified by a first set of single factor experiments. The actual values of the independent variables coded at four levels and three factors were selected based on the results of the single factor experiments. Subsequently, the levels of acetone and ammonium sulfate, and ultrasonic time were optimized using the orthogonal array method. Results The optimum conditions for the extraction of PC were found to use 7.0 mL acetone, 5.5 mg ammonium sulfate, with ultrasonic time for 5 min. Under these optimized conditions, the experimental maximum yield of PC was 37.8 mg/g, much higher than that of the traditional ultrasonic extraction (UE, 29.0 mg/g). And the PC obtained by this method had stronger anti-oxidative activities than those by traditional UE method. Conclusion These results indicate the suitability of the models developed and the success in optimizing the extraction conditions. This is an economical and efficient method for extracting polyphenols from I. obliquus.展开更多
The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emiss...The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.展开更多
In this paper,the aqueous two-phase systems(ATPS)containing n-ethylpyridinium tetrafluoroborate([EPy]BF_(4)),sodium-based salts,and water were studied and the extraction efficiency of 2-chlorophenol was measured to st...In this paper,the aqueous two-phase systems(ATPS)containing n-ethylpyridinium tetrafluoroborate([EPy]BF_(4)),sodium-based salts,and water were studied and the extraction efficiency of 2-chlorophenol was measured to study the ATPS performance in extracting phenolic compounds.The binodal curves of[EPy]BF_(4)+sodium carbonate(Na_(2)CO_(3))ATPS and[EPy]BF_(4)+sodium dihydrogen phosphate(NaH_(2)PO_(4))ATPS have been determined at 308.15 K,318.15 K,and 328.15 K and atmospheric pressure.After getting good correlation with Merchuk equation,the binodal curves together with gravimetric method were used to calculate the tie-lines data.Furthermore,the reliability of tie-lines data was verified using Othmer-Tobias and Bancroft equations.Then,the salt influence and temperature influence on the phase behavior were discussed and the results show the salt-outing ability of Na_(2)CO_(3) is better than NaH_(2)PO_(4).With the aim of studying the ATPS performance in extracting phenolic compounds,extraction efficiency for 2-chlorophenol at different temperatures were studied and the results show that[EPy]BF_(4)+Na_(2)CO_(3) ATPS is preferred than[EPy]BF_(4)+NaH_(2)PO_(4) ATPS in applications.展开更多
Bromelain is the denomination given to the group of endoproteases obtained from members of Bromeliacea family. These enzymes have a wide range of proven applications and have been an object of study for worldwide rese...Bromelain is the denomination given to the group of endoproteases obtained from members of Bromeliacea family. These enzymes have a wide range of proven applications and have been an object of study for worldwide researchers for decades. Over the years, several different downstream processes were studied in order to determine which technique would be worthwhile to be implemented in Brazil and provide the national market with such product. The objective of the present study is to relate the main studies in Brazil that has proven that bromelain purification can be cost-effective, in addition to the well-known benefits owned by such enzymes, and highlight the applications that create their market potential in the Brazilian market.展开更多
文摘A novel method for the separation/analysis rhodamine B has been described. The ionic liquid (1-tetradecyl-3-methylimidazolium bromide)/anion surfactant (sodium dodecyl sulfate)/NaCl two-phase systems (ATPSs) is presented as a simple, rapid and effective sample pretreatment technique coupled with ultraviolet spectrometry for analysis rhodamine B in soft drink. The effects of parameters on the ATPSs extraction of rhodamine B such as amount of surfactant, ionic liquid and salt, pH, temperature, stabilization and centrifugal time have been studied in details. Under the optimized conditions, the linear range of calibration curve for rhodamine B was 0.05 - 7.0 μg·mL-1 and the detection limit was 3.2 ng·mL-1. The phase equilibrium and the mechanism of phase separation for ATPSs have been discussed. This method has been applied to the determination of rhodamine B in soft drink.
基金This study was supported by National Natural Science Foundation of China Youth Science Fund Project(Grant number 82001107)the Applied Basic Research Project of Sichuan province(Grant number 2022NSFSC1345,China).
文摘The aqueous two-phase system(ATPS)is an all-aqueous system fabricated from two immiscible aqueous phases.It is spontaneously assembled through physical liquid-liquid phase separation(LLPS)and can create suitable templates like the multicompartment of the intracellular environment.Delicate structures containing multiple compartments make it possible to endow materials with advanced functions.Due to the properties of ATPSs,ATPS-based drug delivery systems exhibit excellent biocompatibility,extraordinary loading efficiency,and intelligently controlled content release,which are particularly advantageous for delivering drugs in vivo.Therefore,we will systematically review and evaluate ATPSs as an ideal drug delivery system.Based on the basic mechanisms and influencing factors in forming ATPSs,the transformation of ATPSs into valuable biomaterials is described.Afterward,we concentrate on the most recent cutting-edge research on ATPS-based delivery systems.Finally,the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
基金Supported by the National Natural Science Foundation of China(No.29736180).
文摘The synthesis route was investigated and optimized for the preparation of iminodiacetic acid-polyethylene glycol (IDA-PEG) for immobilized metal ion affinity partitioning in aqueous two-phase systems. IDA-PEG was synthesized from PEG in two steps by the reaction of iminodiacetic acid with a monosubstituted derivative of epichlorohydrin-activated PEG. The Cu2+ content combined with IDA-PEG was determined by atomic absorption spectrometry as 0.5 mol·mol^-1 (PEG). Furthermore, the affinity partitioning behavior of lactate dehydrogenase in polyethylene glycol/hydroxypropyl starch aqueous two-phase systems was studied to clarify the affinity effect of the Cu(Ⅱ)-IDA-PEG.
基金Natural Science Foundation of China (31070052)Natural Science Foundation of Xuzhou Normal University (08XLY14)
文摘Objective To optimize the extracting technology of assessing the maximum yield of phenolic compounds (PC) from Inonotus obliquus by single factor experiments and orthogonal array design methods through aqueous two-phase systems combined with ultrasonic extraction. Methods The range of the independent variables, namely levels of acetone and ammonium sulfate, and ultrasonic time were identified by a first set of single factor experiments. The actual values of the independent variables coded at four levels and three factors were selected based on the results of the single factor experiments. Subsequently, the levels of acetone and ammonium sulfate, and ultrasonic time were optimized using the orthogonal array method. Results The optimum conditions for the extraction of PC were found to use 7.0 mL acetone, 5.5 mg ammonium sulfate, with ultrasonic time for 5 min. Under these optimized conditions, the experimental maximum yield of PC was 37.8 mg/g, much higher than that of the traditional ultrasonic extraction (UE, 29.0 mg/g). And the PC obtained by this method had stronger anti-oxidative activities than those by traditional UE method. Conclusion These results indicate the suitability of the models developed and the success in optimizing the extraction conditions. This is an economical and efficient method for extracting polyphenols from I. obliquus.
基金the supports of the National Science Foundation of China (22008130, 22025801)the China Postdoctoral Science Foundation (2020M682124)+1 种基金the Qingdao Postdoctoral Researchers Applied Research Project Foundation (RZ2000001426)the Scientific Research Foundation for Youth Scholars from Qingdao University (DC1900014265) for this work
文摘The concept of“carbon neutrality”poses a huge challenge for chemical engineering and brings great opportunities for boosting the development of novel technologies to realize carbon offsetting and reduce carbon emissions.Developing high-efficient,low-cost,energy-efficient and eco-friendly microfluidicbased microchemical engineering is of great significance.Such kind of“green microfluidics”can reduce carbon emissions from the source of raw materials and facilitate controllable and intensified microchemical engineering processes,which represents the new power for the transformation and upgrading of chemical engineering industry.Here,a brief review of green microfluidics for achieving carbon neutral microchemical engineering is presented,with specific discussions about the characteristics and feasibility of applying green microfluidics in realizing carbon neutrality.Development of green microfluidic systems are categorized and reviewed,including the construction of microfluidic devices by bio-based substrate materials and by low carbon fabrication methods,and the use of more biocompatible and nondestructive fluidic systems such as aqueous two-phase systems(ATPSs).Moreover,low carbon applications benefit from green microfluidics are summarized,ranging from separation and purification of biomolecules,high-throughput screening of chemicals and drugs,rapid and cost-effective detections,to synthesis of fine chemicals and novel materials.Finally,challenges and perspectives for further advancing green microfluidics in microchemical engineering for carbon neutrality are proposed and discussed.
基金sponsored by the Natural Science Foundation for Distinguished Young Scholars of Guangdong Provence (2019B151502038)the National Natural Science Foundation of China (21706038, 21808042, 21808039)+2 种基金the Fundamental Research Funds for the Central Universities (300102299202)the National Training Projects of the University Students’ Innovation and Entrepreneurship program (201910710125)the Scientific Innovation Practice Project of Postgraduates of Chang’an University (300103703058, 300103703016)
文摘In this paper,the aqueous two-phase systems(ATPS)containing n-ethylpyridinium tetrafluoroborate([EPy]BF_(4)),sodium-based salts,and water were studied and the extraction efficiency of 2-chlorophenol was measured to study the ATPS performance in extracting phenolic compounds.The binodal curves of[EPy]BF_(4)+sodium carbonate(Na_(2)CO_(3))ATPS and[EPy]BF_(4)+sodium dihydrogen phosphate(NaH_(2)PO_(4))ATPS have been determined at 308.15 K,318.15 K,and 328.15 K and atmospheric pressure.After getting good correlation with Merchuk equation,the binodal curves together with gravimetric method were used to calculate the tie-lines data.Furthermore,the reliability of tie-lines data was verified using Othmer-Tobias and Bancroft equations.Then,the salt influence and temperature influence on the phase behavior were discussed and the results show the salt-outing ability of Na_(2)CO_(3) is better than NaH_(2)PO_(4).With the aim of studying the ATPS performance in extracting phenolic compounds,extraction efficiency for 2-chlorophenol at different temperatures were studied and the results show that[EPy]BF_(4)+Na_(2)CO_(3) ATPS is preferred than[EPy]BF_(4)+NaH_(2)PO_(4) ATPS in applications.
文摘Bromelain is the denomination given to the group of endoproteases obtained from members of Bromeliacea family. These enzymes have a wide range of proven applications and have been an object of study for worldwide researchers for decades. Over the years, several different downstream processes were studied in order to determine which technique would be worthwhile to be implemented in Brazil and provide the national market with such product. The objective of the present study is to relate the main studies in Brazil that has proven that bromelain purification can be cost-effective, in addition to the well-known benefits owned by such enzymes, and highlight the applications that create their market potential in the Brazilian market.