Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl...Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.展开更多
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR...This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.展开更多
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio...Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade.展开更多
To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti...To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance.展开更多
In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re...In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines.展开更多
This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes....This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians.展开更多
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin...In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.展开更多
Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue...Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm.展开更多
The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlig...The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlights various techniques,including acoustic emission analysis,strain signal monitoring,and vibration analysis,as effective approaches for damage detection.Vibration analysis,in particular,shows promise for fault identification by analyzing changes in dynamic characteristics.Damage indices based on modal properties,such as natural frequencies,mode shapes,and curvature,are discussed.展开更多
For evaluate the aerodynamic character of the turbine cascades which have the aft-loaded profile, the experimental investigation was carried out on the low speed annular wind tunnel. And the detailed measurements of t...For evaluate the aerodynamic character of the turbine cascades which have the aft-loaded profile, the experimental investigation was carried out on the low speed annular wind tunnel. And the detailed measurements of the aerodynamic parameters were made from upstream to downstream of the two type turbine cascades, the one is the conventional straight blades cascade, the other is the curved blades cascades. The static pressure distributions on the endwall and the blade surface were also carried out. The influence of the aft-loaded profile and the curved blade on the development of loss and the pressure distribution was discussed, and analyses the different flow phenomena and mechanism in two type turbine cascades.展开更多
Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
The windy environment is the main cause affecting the efficiency of offshore wind turbine installation.In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high...The windy environment is the main cause affecting the efficiency of offshore wind turbine installation.In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high wind speed conditions,the Stewart platform is used as an auxiliary tool to help dock the wind turbine blade in this paper.In order to verify the effectiveness of the Stewart platform for blade docking,a blade docking simulation system consisting of the Stewart platform,wind turbine blade,and wind load calculation module was built based on Simulink/SimscapeMultibody.At the same time,the PID algorithm is used to control the Stewart platform so that the blade can effectively track the desired trajectory during the docking process to ensure the successful docking of the blade.Through the simulation of the docking process for blades with a length of 61.5 meters,this paper successfully demonstrates a docking system that might facilitate future docking processes.It also shows that the Stewart platform can effectively reduce the vibration and the movement range of the blade root and improve the stability and efficiency of blade docking.展开更多
In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile desig...In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.展开更多
The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element...The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element thermal analysis. The calculated results are in accordance with the experimental ones. The results show that with the increase of withdrawal rate the concave curvature of the liquidus isotherm is larger and larger, and the temperature gradients of the blades increase. No effects of withdrawal rate on the distribution of the temperature gradients of the starter and helical grain selector of the blades are observed at withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min. The relatively high temperature gradient between 500℃/cm and 1000℃/cm in the starter and helical grain selector is obtained at three withdrawal rates.展开更多
Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbin...Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,camera calibration,distortion correction,the semi-automatic high-precision extraction of targets,coordinate systems unification,and bundle adjustment,etc. The relatively convenient construction method of the measuring system can provide an abundant measuring content,a wide measuring range and post processing.The experimental results show that the accuracy of the integral deformation measurement is higher than 0.5 mm and that of the buckling deformation measurement higher than 0.1mm.展开更多
A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix...A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.展开更多
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris...The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.展开更多
Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and h...Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and high design difficulty of aero-engine cooling turbine blade.The relationship between the external and internal body features,the body attached feature is analyzed as viewed from the feature and parameter terms.The parametric design processes and design examples of the external body shape,tenon,platform and internal body shape,ribs,pin fins are introduced.The system improves the design efficiency of cooling turbine blade and establishes the foundation of multidisciplinary design optimization procedure for it.展开更多
Fatigue strength assessment of a horizontal axis wind turbine(HAWT)composite blade is considered.Fatigue load cases are identified,and loads are calculated by the GH Bladed software which is specified at the IEC61400 ...Fatigue strength assessment of a horizontal axis wind turbine(HAWT)composite blade is considered.Fatigue load cases are identified,and loads are calculated by the GH Bladed software which is specified at the IEC61400 international specification and GL(Germanisher Lloyd)regulations for the wind energy conversion system.Stress analysis is performed with a 3-D finite element method(FEM).Considering Saint-Venant′s principle,a uniform cross section FEM model is built at each critical zone.Stress transformation matrixes(STM)are set up by applied six unit load components on the FEM model separately.STM can be used to convert the external load into stresses in the linear elastic range.The main material of composite wind turbine blade is fiber reinforced plastics(FRP).In order to evaluate the degree of fatigue damage of FRP,the stresses of fiber direction are extracted and the well-known strength criterion-Puck theory is used.The total fatigue damage of each laminate on the critical point is counted by the rain-flow counting method and Miner′s damage law based on general S-N curves.Several sections of a 45.3mblade of a 2 MW wind turbine are studied using the fatigue evaluation method.The performance of this method is compared with far more costly business software FOCUS.The results show that the fatigue damage of multi-axis FRP can be assessed conveniently by the FEM-STM method.And the proposed method gives a reliable and efficient method to analyze the fatigue damage of slender composite structure with variable cross-sections.展开更多
During heat treatment process, the distortion behavior inevitably appears in hydraulic turbine blade castings. In this research, a technology was developed for real-time measurement of the distortion in hydraulic turb...During heat treatment process, the distortion behavior inevitably appears in hydraulic turbine blade castings. In this research, a technology was developed for real-time measurement of the distortion in hydraulic turbine blade castings at the still air cooling and forced air cooling stages during heat treatment process. The method was used to measure the distortion behavior at the cooling stages in both normalizing and tempering processes. At the normalization, the distortion at the blade comer near outlet side undergoes four stages with alternating bending along positive and negative directions. At the tempering stage, the distortion could be divided into two steps. The temperature difference between the two surfaces of blade casting was employed to analyze the distortion mechanism. The measured results could be applied to guide the production, and the machining allowance could be reduced by controlling the distortion behavior.展开更多
基金supported by the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJQN201901146)the Special Key Project of Technological Innovation and Application Development in Chongqing(Grant No.cstc2020jscx-dxwtBX0048).
文摘Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.
基金supported by the National Natural Science Foundation of China(No.51965034).
文摘This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.
基金the Science and Technology Programs of Gansu Province(Grant Nos.21JR1RA248,23YFGA0050)the Young Scholars Science Foundation of Lanzhou Jiaotong University(Grant Nos.2020039,2020017)+2 种基金the Special Funds for Guiding Local Scientific and Technological Development by the Central Government(Grant No.22ZY1QA005)the National Natural Science Foundation of China(Grant No.72361019)the Gansu Provincial Outstanding Graduate Students Innovation Star Program(Grant No.2023CXZX-574).
文摘Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade.
基金supported by the National Natural Science Foundation Projects(Grant Number 51966018)the Chongqing Natural Science Foundation of China(Grant Number cstc2020jcyjmsxmX0314)+2 种基金the Key Research&Development Program of Xinjiang(Grant Number 2022B01003)Ningxia Key Research and Development Program of Foreign Science and Technology Cooperation Projects(202204)the Key Scientific Research Project in Higher Education Institution from the Ningxia Education Department(2022115).
文摘To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance.
基金This research was funded by the Basic Research Funds for Universities in Inner Mongolia Autonomous Region(No.JY20220272)the Scientific Research Program of Higher Education in InnerMongolia Autonomous Region(No.NJZZ23080)+3 种基金the Natural Science Foundation of InnerMongolia(No.2023LHMS05054)the NationalNatural Science Foundation of China(No.52176212)We are also very grateful to the Program for Innovative Research Team in Universities of InnerMongolia Autonomous Region(No.NMGIRT2213)The Central Guidance for Local Scientific and Technological Development Funding Projects(No.2022ZY0113).
文摘In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines.
基金Research Project on Lightning Protection Technology for 35 kV Collector Lines in Wuxuan Qinglan Wind Farm(SFC/WXY-ZX-FW-23-008)Strong Electromagnetic Pulse Protection(Lightning)Effect in Guangdong Yuedian Zhuhai Biqing Bay Sea Wind Field and Real-time Monitoring Technology Research and Development Project of Grounding ResistanceResearch and Application Demonstration Project of Lightning Protection Technology for Offshore and Island Wind Field of China General Nuclear New Energy South China Branch.
文摘This paper systematically studies the flashover probability of wind turbine blade lightning arrester and the impact of strong electromagnetic pulses on the local and surrounding wind turbines during lightning strikes.The research results indicate that the flashover probability of direct lightning strikes by the wind turbine blade lightning arrester is almost negligible,and the strong electromagnetic pulse of wind turbine blade during lightning strikes has a serious impact on the electronic equipment of the machine,while the impact on the surrounding wind turbine is relatively small.At the same time,the calculation formula for the reflection of lightning current on the carbon brush between the wind turbine hub and the engine compartment during the flashing of the wind turbine blades is provided,and the calculation method for calculating the spatial gradient distribution of electromagnetic field intensity using Biot-Savart Law theorem is applied.The limitations of using wind turbine blades for lightning protection are pointed out,and a technical route for achieving wind turbine lightning safety is proposed,which can be used as a reference for wind turbine lightning protection technicians.
基金supported by the Science and Technology Programs of Gansu Province,China(Nos.21JR1RA248,20JR10RA264)the Young Scholars Science Foundation of Lanzhou Jiaotong University,China(Nos.2020039,2020017)the Special Funds for Guiding Local Scientific and Technological Development by the Central Government,China(No.22ZY1QA005)。
文摘In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.
基金funded by the National Natural Science Foundation of China (Grant Number 52075305).
文摘Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm.
文摘The increasing size of these blades of wind turbines emphasizes the need for reliable monitoring and maintenance.This brief review explores the detection and analysis of damage in wind turbine blades.The study highlights various techniques,including acoustic emission analysis,strain signal monitoring,and vibration analysis,as effective approaches for damage detection.Vibration analysis,in particular,shows promise for fault identification by analyzing changes in dynamic characteristics.Damage indices based on modal properties,such as natural frequencies,mode shapes,and curvature,are discussed.
文摘For evaluate the aerodynamic character of the turbine cascades which have the aft-loaded profile, the experimental investigation was carried out on the low speed annular wind tunnel. And the detailed measurements of the aerodynamic parameters were made from upstream to downstream of the two type turbine cascades, the one is the conventional straight blades cascade, the other is the curved blades cascades. The static pressure distributions on the endwall and the blade surface were also carried out. The influence of the aft-loaded profile and the curved blade on the development of loss and the pressure distribution was discussed, and analyses the different flow phenomena and mechanism in two type turbine cascades.
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
文摘The windy environment is the main cause affecting the efficiency of offshore wind turbine installation.In order to improve the stability and efficiency of single-blade installation of offshore wind turbines under high wind speed conditions,the Stewart platform is used as an auxiliary tool to help dock the wind turbine blade in this paper.In order to verify the effectiveness of the Stewart platform for blade docking,a blade docking simulation system consisting of the Stewart platform,wind turbine blade,and wind load calculation module was built based on Simulink/SimscapeMultibody.At the same time,the PID algorithm is used to control the Stewart platform so that the blade can effectively track the desired trajectory during the docking process to ensure the successful docking of the blade.Through the simulation of the docking process for blades with a length of 61.5 meters,this paper successfully demonstrates a docking system that might facilitate future docking processes.It also shows that the Stewart platform can effectively reduce the vibration and the movement range of the blade root and improve the stability and efficiency of blade docking.
基金Project (2008ZE53042) supported by National Aerospace Science Foundation of China
文摘In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.
文摘The three-dimensional solidification simulation of the investment castings of single crystal hollow turbine blade at the withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min has been performed with the finite element thermal analysis. The calculated results are in accordance with the experimental ones. The results show that with the increase of withdrawal rate the concave curvature of the liquidus isotherm is larger and larger, and the temperature gradients of the blades increase. No effects of withdrawal rate on the distribution of the temperature gradients of the starter and helical grain selector of the blades are observed at withdrawal rates of 2 mm/min, 4.5 mm/min and 7 mm/min. The relatively high temperature gradient between 500℃/cm and 1000℃/cm in the starter and helical grain selector is obtained at three withdrawal rates.
文摘Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,camera calibration,distortion correction,the semi-automatic high-precision extraction of targets,coordinate systems unification,and bundle adjustment,etc. The relatively convenient construction method of the measuring system can provide an abundant measuring content,a wide measuring range and post processing.The experimental results show that the accuracy of the integral deformation measurement is higher than 0.5 mm and that of the buckling deformation measurement higher than 0.1mm.
基金financially supported by the Marine Renewable Energy Research Project of State Oceanic Administration of China(Grant No.GHME2013GC03)
文摘A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.
基金Project(2015B37714)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51605005)supported by the National Natural Science Foundation of China+1 种基金Project(ZK16-03-03)supported by the Open Foundation of Jiangsu Wind Technology Center,ChinaProject([2013]56)supported by the First Group of 2011 Plan of Jiangsu Province,China
文摘The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.
文摘Based on feature modeling and mathematical analysis methods,a process-oriented and modular parametric design system for advanced turbine cooling blade is developed with UG API,aiming at the structural complexity and high design difficulty of aero-engine cooling turbine blade.The relationship between the external and internal body features,the body attached feature is analyzed as viewed from the feature and parameter terms.The parametric design processes and design examples of the external body shape,tenon,platform and internal body shape,ribs,pin fins are introduced.The system improves the design efficiency of cooling turbine blade and establishes the foundation of multidisciplinary design optimization procedure for it.
基金supported jointly by the National Basic Research Program of China(″973″Program)(No.2014CB046200)the Natural Science Foundation of Jiangsu Province(No.BK2014059)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11172135)
文摘Fatigue strength assessment of a horizontal axis wind turbine(HAWT)composite blade is considered.Fatigue load cases are identified,and loads are calculated by the GH Bladed software which is specified at the IEC61400 international specification and GL(Germanisher Lloyd)regulations for the wind energy conversion system.Stress analysis is performed with a 3-D finite element method(FEM).Considering Saint-Venant′s principle,a uniform cross section FEM model is built at each critical zone.Stress transformation matrixes(STM)are set up by applied six unit load components on the FEM model separately.STM can be used to convert the external load into stresses in the linear elastic range.The main material of composite wind turbine blade is fiber reinforced plastics(FRP).In order to evaluate the degree of fatigue damage of FRP,the stresses of fiber direction are extracted and the well-known strength criterion-Puck theory is used.The total fatigue damage of each laminate on the critical point is counted by the rain-flow counting method and Miner′s damage law based on general S-N curves.Several sections of a 45.3mblade of a 2 MW wind turbine are studied using the fatigue evaluation method.The performance of this method is compared with far more costly business software FOCUS.The results show that the fatigue damage of multi-axis FRP can be assessed conveniently by the FEM-STM method.And the proposed method gives a reliable and efficient method to analyze the fatigue damage of slender composite structure with variable cross-sections.
基金supported financially by the National Eleventh Five-Year Science and Technology Support Program of China through Grant No.2007BAF02B02Major National Sci-Tech Project of China No 2011ZX04014-052
文摘During heat treatment process, the distortion behavior inevitably appears in hydraulic turbine blade castings. In this research, a technology was developed for real-time measurement of the distortion in hydraulic turbine blade castings at the still air cooling and forced air cooling stages during heat treatment process. The method was used to measure the distortion behavior at the cooling stages in both normalizing and tempering processes. At the normalization, the distortion at the blade comer near outlet side undergoes four stages with alternating bending along positive and negative directions. At the tempering stage, the distortion could be divided into two steps. The temperature difference between the two surfaces of blade casting was employed to analyze the distortion mechanism. The measured results could be applied to guide the production, and the machining allowance could be reduced by controlling the distortion behavior.