To reveal the period and after-effect of soil water stress on winter wheat, the article employs the experiment results carried out in the greenhouse. The results showed that the root-restricted weights varied with str...To reveal the period and after-effect of soil water stress on winter wheat, the article employs the experiment results carried out in the greenhouse. The results showed that the root-restricted weights varied with stress degrees and stress times during and after water stressing. In the course of stress, the chief reason resticting the weight of root was the stress intensity at this time, and that of severe stress treatment was larger than that of mild stress treatment. After water stress was relieved, the results of the after-effect of soil water stress on root growth were that, the stress intensity of short-time and mild stress was larger than that of long-time and severe stress. Comparing two-stage stress intensities, root-restricted weight resulted from after-effect intensity of stress under all of the short-time treatment, and the mild and the long-time stress treatments, while that resulted from the period stress intensity under the severe and the long-time stress treatments. In general, the effects of water stress on root were attributed to the three factors, a formed basis in the previous stage, the after-effect of water condition before this stage and influence of water in this stage, which lead to the characters of root in the whole growth stage.展开更多
A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple super...A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple superphosphate were tested in three agroecological zones over three consecutive years of cultivation. This study revealed that the application of Moroccan phosphate rock (PRM) and/or triple superphosphate (TSP) did not significantly affect soil cation exchange capacity (CEC) and organic carbon (Corg) content. However, there was a negative residual effect of PRM-rich treatments on soil pH and K and N content, but the impact varies depending on the characteristics of the soils studied. Furthermore, nutrient losses, notably nitrogen from −17.5 to −267.7 kg/ha and potassium (−0.1 to 0.7 kg/ha), were observed in all treatments. Only phosphorus showed a positive balance of +49.56 to +52 kg/ha in PRM-rich treatments. Treatment T3, composed of 80% RPM and 20% TSP, was the most effective in all zones, with a relative increase in grain yields of over 100% compared to the control. These results suggest that the input of natural phosphate rock can significantly improve rice yields and soil properties in the studied agroecological zones in Côte d’Ivoire.展开更多
基金the Ministry of Science and Technology of China (1999011700) the National Natural Science Foundation of China (49971042).
文摘To reveal the period and after-effect of soil water stress on winter wheat, the article employs the experiment results carried out in the greenhouse. The results showed that the root-restricted weights varied with stress degrees and stress times during and after water stressing. In the course of stress, the chief reason resticting the weight of root was the stress intensity at this time, and that of severe stress treatment was larger than that of mild stress treatment. After water stress was relieved, the results of the after-effect of soil water stress on root growth were that, the stress intensity of short-time and mild stress was larger than that of long-time and severe stress. Comparing two-stage stress intensities, root-restricted weight resulted from after-effect intensity of stress under all of the short-time treatment, and the mild and the long-time stress treatments, while that resulted from the period stress intensity under the severe and the long-time stress treatments. In general, the effects of water stress on root were attributed to the three factors, a formed basis in the previous stage, the after-effect of water condition before this stage and influence of water in this stage, which lead to the characters of root in the whole growth stage.
文摘A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple superphosphate were tested in three agroecological zones over three consecutive years of cultivation. This study revealed that the application of Moroccan phosphate rock (PRM) and/or triple superphosphate (TSP) did not significantly affect soil cation exchange capacity (CEC) and organic carbon (Corg) content. However, there was a negative residual effect of PRM-rich treatments on soil pH and K and N content, but the impact varies depending on the characteristics of the soils studied. Furthermore, nutrient losses, notably nitrogen from −17.5 to −267.7 kg/ha and potassium (−0.1 to 0.7 kg/ha), were observed in all treatments. Only phosphorus showed a positive balance of +49.56 to +52 kg/ha in PRM-rich treatments. Treatment T3, composed of 80% RPM and 20% TSP, was the most effective in all zones, with a relative increase in grain yields of over 100% compared to the control. These results suggest that the input of natural phosphate rock can significantly improve rice yields and soil properties in the studied agroecological zones in Côte d’Ivoire.