In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By u...In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.展开更多
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no end...In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.展开更多
In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch in...In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].展开更多
The importance of epidemiology in our life has stimulated researchers to extend the classic Susceptibles-Infectives-Removed (SIR) model to sophisticated models by including more factors in order to give detailed trans...The importance of epidemiology in our life has stimulated researchers to extend the classic Susceptibles-Infectives-Removed (SIR) model to sophisticated models by including more factors in order to give detailed transmission dynamics of epidemic diseases. However, the integration of the quarantine policy and age-structure is less addressed. In this work we propose an age-structured MSIQR (temporarily immune-susceptibles-infectives-quarantined-removed) model to study the impact of quarantine policies on the spread of epidemic diseases. Specifically, we investigate the existence of steady state solutions and stability property of the proposed model. The derived explicit expression of the basic reproductive number shows that the disease-free equilibrium is globally asymptotically stable if, and that the unique endemic equilibrium exists if. In addition, the stability conditions of the endemic equilibrium are derived.展开更多
Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptib...Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptible individuals in population is as the detection threshold value. By the Poincaré map, theory of differential inequalities and differential equation geometry, the existence and orbital stability of the disease-free periodic solution are discussed. Theoretical results show that by state-dependent pulse vaccination we can make the proportion of infected individuals tend to zero, and control the transmission of disease in population.展开更多
In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start wi...In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.展开更多
The use of the SIR model to predict the time evolution of an epidemic is very frequent and has spatial information about its propagation which may be very useful to contrast its spread. In this paper we take a particu...The use of the SIR model to predict the time evolution of an epidemic is very frequent and has spatial information about its propagation which may be very useful to contrast its spread. In this paper we take a particular cellular automaton model that well reproduces the time evolution of the disease given by the SIR model;setting the automaton is generally an annoying problem because we need to run a lot of simulations, compare them to the solution of the SIR model and, finally, decide the parameters to use. In order to make this procedure easier, we will show a fast method that, in input, requires the parameters of the SIR continuous model that we want to reproduce, whereas, in output, it yields the parameters to use in the cellular automaton model. The problem of computing the most suitable parameters for the reticular model is reduced to the problem of finding the roots of a polynomial Equation.展开更多
In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, a...In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, and give the sufficient conditions caused by random environmental factors leading to the extinction of infectious diseases. Moreover, we verify the conditions for the persistence of infectious diseases in the mean sense. Finally, we provide the biology interpretation and some strategies to control the infectious diseases.展开更多
A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a uni...A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.展开更多
We consider a SIR epidemic model with saturated incidence rate and treatment. We show that if the basic reproduction number, R0 is less than unity and the disease free equilibrium is locally asymptotically stable. Mor...We consider a SIR epidemic model with saturated incidence rate and treatment. We show that if the basic reproduction number, R0 is less than unity and the disease free equilibrium is locally asymptotically stable. Moreover, we show that if R0 > 1, the endemic equilibrium is locally asymptotically stable. In the end, we give some numerical results to compare our model with existing model and to show the effect of the treatment term on the model.展开更多
In this paper we present a model with spatial heterogeneity based on cellular automata (CA). In the model we consider the relevant heterogeneity of host (susceptible) mixing and the natural birth rate. We divide t...In this paper we present a model with spatial heterogeneity based on cellular automata (CA). In the model we consider the relevant heterogeneity of host (susceptible) mixing and the natural birth rate. We divide the susceptible population into three groups according to the immunity of each individual based on the classical susceptible-infectedremoved (SIR) epidemic models, and consider the spread of an infectious disease transmitted by direct contact among humans and vectors that have not an incubation period to become infectious. We test the local stability and instability of the disease-free equilibrium by the spectrum radii of Jacobian. The simulation shows that the structure of the nearest neighbour size of the cell (or the degree of the scale-free networks) plays a very important role in the spread properties of infectious disease. The positive equilibrium of the infections versus the neighbour size follows the third power law if an endemic equilibrium point exists. Finally, we analyse the feature of the infection waves for the homogeneity and heterogeneous cases respectively.展开更多
A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ulti...A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.展开更多
Computer simulation models are widely applied in various areas of the health care sector, including the spread of infectious diseases. Patch models involve explicit movements of people between distinct locations. The ...Computer simulation models are widely applied in various areas of the health care sector, including the spread of infectious diseases. Patch models involve explicit movements of people between distinct locations. The aim of the present work has been designed and explored a patch model with population mobility between different patches and between each patch and an external population. The authors considered a SIR (susceptible-infected-recovered) scheme. The model was explored by computer simulations. The results show how endemic levels are reached in all patches of the system. Furthermore, the performed explorations suggest that the people mobility between patches, the immigration from outside the system and the infection rate in each patch, are factors that may influence the dynamics of epidemics and should be considered in health policy planning.展开更多
Three analytic algorithms based on Adomian decomposition, homotopy perturbation and homotopy analysis methods are proposed to solve some models of nonlinear age-structured population dynamics and epidemiology. Truncat...Three analytic algorithms based on Adomian decomposition, homotopy perturbation and homotopy analysis methods are proposed to solve some models of nonlinear age-structured population dynamics and epidemiology. Truncating the resulting convergent infinite series, we obtain numerical solutions of high accuracy for these models. Three numerical examples are given to illustrate the simplicity and accuracy of the methods.展开更多
In this paper,an SIRS epidemic model using Grunwald-Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the pop...In this paper,an SIRS epidemic model using Grunwald-Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the population during the outbreak of deadly infectious diseases.The criteria for the spread or extinction of the disease are derived and discussed on the basis of the basic reproduction number.The condition for the existence of Hopf bifurcation is discussed considering fractional order as a bifurcation parameter.Additionally,using the Grunwald-Letnikov approximation,the simulation is carried out to confirm the validity of analytic results graphically.Using the real data of COVID-19 in India recorded during the second wave from 15 May 2021 to 15 December 2021,we estimate the model parameters and find that the fractional-order model gives the closer forecast of the disease than the classical one.Both the analytical results and numerical simulations presented in this study suggest different policies for controlling or eradicating many infectious diseases.展开更多
基金supported in part by JSPS Fellows,No.237213 of Japan Society for the Promotion of Science to the first authorthe Grant MTM2010-18318 of the MICINN,Spanish Ministry of Science and Innovation to the second authorScientific Research (c),No.21540230 of Japan Society for the Promotion of Science to the third author
文摘In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlin- ear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear inci- dence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss.
基金This work is supported by the National Sciences Foundation of China (10471040)the Youth Science Foundations of Shanxi Province (20021003).
文摘In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.
基金supported by Japan Society for the Promotion of Science (Grant Scientific Research (c), No. 24540219 to the first author, JSPS Fellows, No.237213 to the second author, and No. 222176 to the third author)
文摘In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].
文摘The importance of epidemiology in our life has stimulated researchers to extend the classic Susceptibles-Infectives-Removed (SIR) model to sophisticated models by including more factors in order to give detailed transmission dynamics of epidemic diseases. However, the integration of the quarantine policy and age-structure is less addressed. In this work we propose an age-structured MSIQR (temporarily immune-susceptibles-infectives-quarantined-removed) model to study the impact of quarantine policies on the spread of epidemic diseases. Specifically, we investigate the existence of steady state solutions and stability property of the proposed model. The derived explicit expression of the basic reproductive number shows that the disease-free equilibrium is globally asymptotically stable if, and that the unique endemic equilibrium exists if. In addition, the stability conditions of the endemic equilibrium are derived.
文摘Based on the mechanism of prevention and control of infectious disease, we propose, in this paper, an SIRS epidemic model with varying total population size and state-dependent control, where the fraction of susceptible individuals in population is as the detection threshold value. By the Poincaré map, theory of differential inequalities and differential equation geometry, the existence and orbital stability of the disease-free periodic solution are discussed. Theoretical results show that by state-dependent pulse vaccination we can make the proportion of infected individuals tend to zero, and control the transmission of disease in population.
文摘In this paper, we treat the spread of COVID-19 using a delayed stochastic SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a general incidence rate and differential susceptibility. We start with a deterministic model, then add random perturbations on the contact rate using white noise to obtain a stochastic model. We first show that the delayed stochastic differential equation that describes the model has a unique global positive solution for any positive initial value. Under the condition R<sub>0</sub> ≤ 1, we prove the almost sure asymptotic stability of the disease-free equilibrium of the model.
文摘The use of the SIR model to predict the time evolution of an epidemic is very frequent and has spatial information about its propagation which may be very useful to contrast its spread. In this paper we take a particular cellular automaton model that well reproduces the time evolution of the disease given by the SIR model;setting the automaton is generally an annoying problem because we need to run a lot of simulations, compare them to the solution of the SIR model and, finally, decide the parameters to use. In order to make this procedure easier, we will show a fast method that, in input, requires the parameters of the SIR continuous model that we want to reproduce, whereas, in output, it yields the parameters to use in the cellular automaton model. The problem of computing the most suitable parameters for the reticular model is reduced to the problem of finding the roots of a polynomial Equation.
文摘In this paper, we investigate the dynamic properties of an SIR epidemic model with saturated growth rate. Under the conditions of an arbitrary initial value, we prove that the system exists unique positive solution, and give the sufficient conditions caused by random environmental factors leading to the extinction of infectious diseases. Moreover, we verify the conditions for the persistence of infectious diseases in the mean sense. Finally, we provide the biology interpretation and some strategies to control the infectious diseases.
基金Natural Science Foundation of Hunan University of Technology,China(No.2012HZX08)the Special Foundation of National Independent Innovation Demonstration Area Construction of Zhuzhou(Applied Basic Research),China
文摘A stochastic susceptible-infective-recovered(SIR)epidemic model with jumps was considered.The contributions of this paper are as follows.(1) The stochastic differential equation(SDE)associated with the model has a unique global positive solution;(2) the results reveal that the solution of this epidemic model will be stochastically ultimately bounded,and the non-linear SDE admits a unique stationary distribution under certain parametric conditions;(3) the coefficients play an important role in the extinction of the diseases.
文摘We consider a SIR epidemic model with saturated incidence rate and treatment. We show that if the basic reproduction number, R0 is less than unity and the disease free equilibrium is locally asymptotically stable. Moreover, we show that if R0 > 1, the endemic equilibrium is locally asymptotically stable. In the end, we give some numerical results to compare our model with existing model and to show the effect of the treatment term on the model.
基金Project supported by the National Natural Science Foundation of China (Grant No 10471040).
文摘In this paper we present a model with spatial heterogeneity based on cellular automata (CA). In the model we consider the relevant heterogeneity of host (susceptible) mixing and the natural birth rate. We divide the susceptible population into three groups according to the immunity of each individual based on the classical susceptible-infectedremoved (SIR) epidemic models, and consider the spread of an infectious disease transmitted by direct contact among humans and vectors that have not an incubation period to become infectious. We test the local stability and instability of the disease-free equilibrium by the spectrum radii of Jacobian. The simulation shows that the structure of the nearest neighbour size of the cell (or the degree of the scale-free networks) plays a very important role in the spread properties of infectious disease. The positive equilibrium of the infections versus the neighbour size follows the third power law if an endemic equilibrium point exists. Finally, we analyse the feature of the infection waves for the homogeneity and heterogeneous cases respectively.
基金National Natural Science Foundations of China(No.11071259,No.11371374)Research Fund for the Doctoral Program of Higher Education of China(No.20110162110060)
文摘A stochastic susceptible-infective-recovered-susceptible( SIRS) model with non-linear incidence and Levy jumps was considered. Under certain conditions, the SIRS had a global positive solution. The stochastically ultimate boundedness of the solution of the model was obtained by using the method of Lyapunov function and the generalized Ito's formula. At last,asymptotic behaviors of the solution were discussed according to the value of R0. If R0< 1,the solution of the model oscillates around a steady state, which is the diseases free equilibrium of the corresponding deterministic model,and if R0> 1,it fluctuates around the endemic equilibrium of the deterministic model.
文摘Computer simulation models are widely applied in various areas of the health care sector, including the spread of infectious diseases. Patch models involve explicit movements of people between distinct locations. The aim of the present work has been designed and explored a patch model with population mobility between different patches and between each patch and an external population. The authors considered a SIR (susceptible-infected-recovered) scheme. The model was explored by computer simulations. The results show how endemic levels are reached in all patches of the system. Furthermore, the performed explorations suggest that the people mobility between patches, the immigration from outside the system and the infection rate in each patch, are factors that may influence the dynamics of epidemics and should be considered in health policy planning.
文摘Three analytic algorithms based on Adomian decomposition, homotopy perturbation and homotopy analysis methods are proposed to solve some models of nonlinear age-structured population dynamics and epidemiology. Truncating the resulting convergent infinite series, we obtain numerical solutions of high accuracy for these models. Three numerical examples are given to illustrate the simplicity and accuracy of the methods.
文摘In this paper,an SIRS epidemic model using Grunwald-Letnikov fractional-order derivative is formulated with the help of a nonlinear system of fractional differential equations to analyze the effects of fear in the population during the outbreak of deadly infectious diseases.The criteria for the spread or extinction of the disease are derived and discussed on the basis of the basic reproduction number.The condition for the existence of Hopf bifurcation is discussed considering fractional order as a bifurcation parameter.Additionally,using the Grunwald-Letnikov approximation,the simulation is carried out to confirm the validity of analytic results graphically.Using the real data of COVID-19 in India recorded during the second wave from 15 May 2021 to 15 December 2021,we estimate the model parameters and find that the fractional-order model gives the closer forecast of the disease than the classical one.Both the analytical results and numerical simulations presented in this study suggest different policies for controlling or eradicating many infectious diseases.