期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-linear creep damage model of sandstone under freeze-thaw cycle 被引量:7
1
作者 LI Jie-lin ZHU Long-yin +4 位作者 ZHOU Ke-ping CHEN Hui GAO Le LIN Yun SHEN Yan-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期954-967,共14页
To study rock damage characteristics under long-term freeze-thaw cycles and loads,rock freeze-thaw and creep damage factors were defined based on nuclear magnetic resonance porosity and volume strain,respectively.The ... To study rock damage characteristics under long-term freeze-thaw cycles and loads,rock freeze-thaw and creep damage factors were defined based on nuclear magnetic resonance porosity and volume strain,respectively.The damage factor is introduced into the basic rheological element,and the non-linear creep damage constitutive model and freeze-thaw rock equation are established to describe non-linear creep characteristics under a constant load.Simultaneously,the creep test of freeze-thaw rock under step loading is performed.Based on the test data,the applicability and accuracy of the creep damage freeze-thaw rock model are analyzed and verified.The results show that freeze-thaw cycles result in continuous rock pore structure damage and deterioration,and nuclear magnetic resonance porosity enhancement.The constant load induces increasing rock plastic deformation,volume,and creep aging damage.As the loading stress increases,the instantaneous rock elastic parameters increase,and the rheological elastic and viscosity parameters decrease.Furthermore,the damage degradation of freeze-thaw cycles weakens the rock viscoplasticity,resulting in a rapid decrease in the viscosity parameter with an increase in freeze-thaw cycles.Generally,the continuous damage of the rock is degraded,and the long-term strength decreases continuously. 展开更多
关键词 aging damage creep damage model damage factor stable creep
下载PDF
DNA Damage Response in Hematopoietic Stem Cell Ageing 被引量:3
2
作者 Tangliang Li Zhong-Wei Zhou +1 位作者 Zhenyu Ju Zhao-Qi Wang 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2016年第3期147-154,共8页
Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity.Hematopoietic stem cells(HSCs) are the most primitive cell type in the hematopoietic system.They divide asymmetricall... Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity.Hematopoietic stem cells(HSCs) are the most primitive cell type in the hematopoietic system.They divide asymmetrically and give rise to daughter cells with HSC identity(selfrenewal) and progenitor progenies(differentiation),which further proliferate and differentiate into full hematopoietic lineages.Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation.Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process.The DNA damage response(DDR)in the cells involves an orchestrated signaling pathway,consisting of cell cycle regulation,cell death and senescence,transcriptional regulation,as well as chromatin remodeling.Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system.In this review,we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. 展开更多
关键词 Hematopoietic stem cells DNA damage response Epigenetics ageing P53
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部