Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to ...Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to 168 h are presented. Both the alloys were found to show identical behaviour of hardness with ageing time. Alloy with higher Zn and Mg content had higher hardness than the alloy with lower solute content. There were three ranges of temperature in which different types of precipitates formed and affected the hardness. Some of the grain boundaries were found to migrate and precipitate free zone has been observed.展开更多
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ...The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.展开更多
Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on...Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.展开更多
FePt nanoparticles in mesoporous silica are fabricated by a simple stepwise synthesis strategy.A pre-annealing temperature-dependent coercivity-ageing effect in FePt nanoparticles is observed at room temperature.For f...FePt nanoparticles in mesoporous silica are fabricated by a simple stepwise synthesis strategy.A pre-annealing temperature-dependent coercivity-ageing effect in FePt nanoparticles is observed at room temperature.For facecentered cubic(fcc)structured FePt nanoparticles,the ageing effect is sensitive to the pre-annealing temperature,especially when the temperature is close to the phase-transition.The special magnetic behavior of FePt nanoparticles reveals that the physical properties gradually change between fee and face-centered tetragonal structures,and will deepen our understanding of the mechanism of such magnetism in FePt nanoparticles.展开更多
The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the te...The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the temperature range from 20 to 50℃. The varnish films were subjected to accelerated ageing by heating at 110℃ for diferent durations. The efect of the accelerated ageing on e' and e' were measured. The activation energy and the entropy change of dielectric relaxation for the dry films before and after ageing were also calculated. All the results obtained were recorded and discussed in correlation with the molecular structure of the investigated varnishes.展开更多
Laboratory animals maintained on a reduced calorie but nutritionally adequate diet have extended life spans and lowered incidences of spontaneous and chemically induced cancers compared to ad libitum- fed counterparts...Laboratory animals maintained on a reduced calorie but nutritionally adequate diet have extended life spans and lowered incidences of spontaneous and chemically induced cancers compared to ad libitum- fed counterparts. Many of the effects of dietary restriction on laboratory animals have been suggested to be related to a deceleration of the aging process. The inhibition of age-related changes in xenobiotic metabolizing enzyme activities by dietary restriction has previously been reported. Alterations of these enzyme activities may cause changes in metabolic activation of carcinogens and, therefore, carcinogen-DNA binding. DNA-repair capability has also been reported to be enhanced in diet-restricted rats. Using AFB1 as a model carcinogen, we have studied in vivo and in vitro hepatic AFB1 -DNA binding, demonstrating that dietary restriction (60% of ad libitum consumption) may decrease the metabolic activation of AFB1, and subsequently reduce AFB 1-DNA binding. Our preliminary results obtained from the AFB 1-DNA binding experiments in isolated hepatocytes suggest that the observed age-dependent reduction in AFB 1-DNA binding which may be attributed to a loss of metabolic activating capability was delayed in the diet-restricted rats.展开更多
Rats of both sexes were fed on a basal feed containing 1% refined konjac meal (RKM) for 18 months and the effects of RKM on the cell aging were observed. A comparable group fed on the basic feed was used as the contro...Rats of both sexes were fed on a basal feed containing 1% refined konjac meal (RKM) for 18 months and the effects of RKM on the cell aging were observed. A comparable group fed on the basic feed was used as the control. Results obtained demonstrate that the long-term feeding of RKM to rats can delay the course of cell aging of the gliocyte, cadiomyocyte, and the endothelial cell of the large and medium arteriases, hence it is likely to delay the occurrence of arteriosclerosis and improve the functions of the brain, heart and vascular system.展开更多
Aim: To assess the seminal characteristics as well as the sexual behavior of men of various age groups to establish the presence of an aging effect on those characteristics. Methods: Semen samples were collected fro...Aim: To assess the seminal characteristics as well as the sexual behavior of men of various age groups to establish the presence of an aging effect on those characteristics. Methods: Semen samples were collected from men (n = 792) undergoing in vitro fertilization or intrauterine insemination in cases of female factor infertility only. Samples were collected using a seminal collection device at intercourse and evaluated manually according to World Health Organization (WHO) standards. Men were divided into four groups according to their ages: (i) 20-30, (ii) 31-40, (iii) 41-50 and (iv) 51-60 years, and their seminal characteristics and responses to a sexual behavior questionnaire were compared. Results: The data showed statistically significant differences in the seminal characteristics tested, most notably in the sperm concentration, motility, grade of motility, hypo-osmotic swelling and normal sperm morphology. Furthermore, the decline in normal sperm morphology with age was more pronounced when using strict criteria rather than WHO standards. There were also differences in total sperm count, total motile sperm and total functional sperm fraction (assessed by both WHO and strict criteria). Significant differences were also observed in the sexual behavior patterns in older men in terms of the number of years they have been trying to conceive, sexual frequency and sexual satisfaction. Conclusion: The data clearly illustrate an aging effect on semen characteristics and sexual behavior in men as they age. It is suggested that the aging effect be taken into consideration when proposing normal standard values for semen characteristics in routine semen analysis as outlined by WHO standards.展开更多
The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the w...The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (V)-void ratio (e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR-V relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V-e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.展开更多
The homogeneous dielectric barrier discharge(DBD) in atmospheric air is most favorable for polymer surface modification due to the low cost of operation and the ability of ambient on-line continuous uniform processing...The homogeneous dielectric barrier discharge(DBD) in atmospheric air is most favorable for polymer surface modification due to the low cost of operation and the ability of ambient on-line continuous uniform processing.In this paper,polypropylene(PP) films are treated using a homogeneous DBD plasma in atmospheric air.The surface properties of PP films are studied using contact angle and surface energy measurement,scanning electron microscopy (SEM) and Fourier transformed infrared spectroscopy(FTIR),and the aging effect after treatment when the treated materials are exposed to open air is also studied,with the modification mechanism being discussed.It is demonstrated that non-thermal plasmas generated by homogeneous DBD in atmospheric air is an effective way to enhance the surface properties of PP films.After the plasma treatment,the surface of PP film is etched,and oxygen-containing polar groups are introduced into the surface.These two processes can induce a remarkable decrease in water contact angle and a remarkable increase in surface energy,and the surface properties of PP films are improved accordingly.展开更多
Aging effect on the mobility and bioavallability of copper (Cu) was investigated using a spiked soil with different incubation periods from 3 to 56 d. Wheat was planted and earthworms were cultured separately in the...Aging effect on the mobility and bioavallability of copper (Cu) was investigated using a spiked soil with different incubation periods from 3 to 56 d. Wheat was planted and earthworms were cultured separately in the incubated soils. The mobility of Cu in soil was evaluated by a chemical fractionation scheme and the toxicity and bioavailability were assessed by measuring the biomass and Cu concentration in tissues. Results showed that aging had a significant effect on Cu fraction distribution, of which Cu tended to incorporate from the exchangeable into more stable fractions such as the reducible and oxidisable fractions. However, aging had little effect on Cu bioavailability to wheat and earthworm. Comparing the soil being incubated for 3 d and 56 d, Cu concentration in wheat roots decreased from 14.5 to 12.8 mg/kg, and no significant changes in Cu concentration were observed in both wheat shoots and earthworms. The Cu concentration was around 2.0 and 50 mg/kg for wheat shoots and earthworms, respectively, irrespective of soil incubation time. The CaC12-extractable Cu had a linear relationship with Cu concentration in wheat roots (R2 = 0.65, P 〈 0.05), but no linear relationship can be found for wheat shoots and earthworms. Biological control may be more crucial for Cu accumulation in organism than the changes in soil Cu fraction caused by aging.展开更多
Geosorbents are the main host of anthropogenic organic pollutants and play a vital role in their fate and transport in the natural environment.Soil and sediment are the most common and abundant geosorbents in the natu...Geosorbents are the main host of anthropogenic organic pollutants and play a vital role in their fate and transport in the natural environment.Soil and sediment are the most common and abundant geosorbents in the natural environment;their interactions with organic pollutants,especially sorption and desorption processes,have been extensively studied from the perspectives of thermodynamics and kinetics.Recently,the aging of organic pollutants in geosorbents has drawn increased attention,leading to an improved understanding of interactions between organic pollutants and geosorbents and informing remediation criteria.Aging has been deemed important in accurately assessing ecologic and health risks of organic pollutants,and both positive and negative impacts have been reported in studies of natural and artificial sorbents.This paper summarizes recent research progress on organic pollutant aging in geosorbents,including related mechanism research,influence factors,bioavailability assessments,and biological and physicochemical remediation of aged organic pollutants.We also discuss issues in the current research and bring forward suggestions for future study.展开更多
The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti5...The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti50Pd50-xNix (x=10, 20, 30) alloys, but no obvious thermal cycling effect was observed in Ti50Pd50Pd40Ni10 alloys and the aging effect shows a curious feature, i.e., the Af temperature does not saturate even after relatively long time aging, which is considered to be due to the occurrence of recovery recrystallization during aging.展开更多
This study aims to discover the stress-state dependence of the dynamic strain aging(DSA)effect on the deformation and fracture behavior of high-strength dual-phase(DP)steel at different deformation temperatures(25-400...This study aims to discover the stress-state dependence of the dynamic strain aging(DSA)effect on the deformation and fracture behavior of high-strength dual-phase(DP)steel at different deformation temperatures(25-400°C)and reveal the damage mechanisms under these various configurations.To achieve different stress states,predesigned specimens with different geometric features were used.Scanning electron microscopy was applied to analyze the fracture modes(e.g.,dimple or shear mode)and underlying damage mechanism of the investigated material.DSA is present in this DP steel,showing the Portevin-Le Chatelier(PLC)effect with serrated flow behavior,thermal hardening,and blue brittleness phenomena.Results show that the stress state contributes distinctly to the DSA effect in terms of the magnitude of thermal hardening and the pattern of blue brittleness.Either low stress triaxiality or Lode angle parameter promotes DSA-induced blue brittleness.Accordingly,the damage mechanisms also show dependence on the stress states in conjunction with the DSA effect.展开更多
The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy lami...The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy laminates are subjected to different impact velocities,which is confirmed as a sensitive factor for the failure modes and mechanisms.The results show the hygrothermal aging effect decreases the ballistic limit by 14.9%,but the influence on ballistic performance is limited within the impact velocity closed to the ballistic limit.The failure modes and energy dissipation mechanisms are confirmed to be slightly influenced by the hygrothermal aging effect.The hygrothermal aging effect induced localization of structural deformation and degradation of mechanical properties are the main reasons for the composite undergoing the same failure modes at smaller impact velocities.Based on the energy absorption mechanisms,analytical expressions predict the ballistic limit and energy absorption to reasonable accuracy,the underestimated total energy absorption results in a relatively poor agreement between the measured and predicted energy absorption efficiency.展开更多
Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water co...Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water contact angle of polytetrafiuoroethylene fihn drops from 114° to 46° and the surface free energy increases from 22.0 mJ/m2 to 59.1 mJ/m2. The optical emission spectrum indicates that there are reactive species such as O2+, O and He in the plasma plume. After plasma treatment, a highly crosslinking structure is formed on the fihn surface and the oxygen element is incorporated into the film surface in the forms of C O-C-, -C=O, and O C=O groups. Over a period of 10 days, the contact angle of the treated film is recovered by only about 10°, which indicates that the plasma surface modification is stable with time.展开更多
Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation i...Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation is essential.This study evaluated the key external factors influencing horizontal and vertical displacements of Luobogang Reservoir Slope in Hanyuan County,China.Displacements had been monitored by a surface-displacement-monitoring system consisting of 118 GPS stations during 2012-2015.To identify the external driving factors,their influence zones,and slope responses,we analyzed 32 months of displacement measurements and other multi-source datasets using the empirical orthogonal function.Overall,the results show that slope aging effect,rainfall,and reservoir water levels are three main driving factors.For horizontal displacement,aging effect is the most critical factor and predominantly affects the edges of landslides,the gob cave,and the public building zones.The secondary factor is the reservoir water level,which mainly acts on the boundary between the slope and reservoir water surface.The closer the slope zone is to the reservoir water,the more significant the impact is.Regarding vertical displacement,the most important factor is rainfall.The vertical displacement caused by rainfall accounts for 56.76% of the total vertical displacements.However,rainfall induces elastic displacements that generally cause less damage to the slope.The secondary factor is aging effect,and the vertical displacement caused by aging effect accounts for 9.42%.However,seven individual zones are highly affected by slope aging effect,which is consistent with the distribution of public buildings.展开更多
Ferroelectric devices are widely applied in many fields, such as energy conversion and communication. The aging effect in ferroelectric materials plays a central role in the reliability of the related equipments. But ...Ferroelectric devices are widely applied in many fields, such as energy conversion and communication. The aging effect in ferroelectric materials plays a central role in the reliability of the related equipments. But it is very difficult to understand the origin of aging effect in ferroelectrics because these materials possess different defects and exhibit various aging behavior. The reverse transition temperature in lead titanate doped with lanthanum increases during aging at ferroelectric phase was reported. It is well known that lattice defects, such as vacancies and solute atoms, are ubiquitous in crystalline solids. These point defects affect physical properties in ferroelectrics significantly. The abnormal increase of the reverse transition temperature was discussed in terms of diffusion of point defects during aging. Dielectric performance in the material after aging was measured and discussed as well.展开更多
The characteristics of a low power 50 Hz argon plasma for surface treatment of polytetrafluoroethylene(PTFE)film is presented in this article.The current–voltage behavior of the discharge and time-varying intensity o...The characteristics of a low power 50 Hz argon plasma for surface treatment of polytetrafluoroethylene(PTFE)film is presented in this article.The current–voltage behavior of the discharge and time-varying intensity of the discharge showed that a DC glow discharge was generated in reversed polarity at every half-cycle.At discharge power between 0.5 and 1 W,the measured electron temperature and density were 2–3 eV and∼10^(8) cm^(−3),respectively.The optical emission spectrum of the argon plasma showed presence of some‘impurity species’such as OH,N_(2) and H,which presumably originated from the residual air in the discharge chamber.On exposure of PTFE films to the argon glow plasma at pressure 120 Pa and discharge power 0.5 to 1 W,the water contact angle reduced by 4%to 20%from the original 114°at pristine condition,which confirms improvement of its surface wettability.The increase in wettability was attributed to incorporation of oxygen-containing functional groups on the treated surface and concomitant reduction in fluorine as revealed by the XPS analysis and increase in surface roughness analyzed from the atomic force micrographs.Ageing upon storage in ambient air showed retention of the induced increase in surface wettability.展开更多
Antiperovskite compounds Mn3Ag1-xCoxN (x =0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction o...Antiperovskite compounds Mn3Ag1-xCoxN (x =0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction of Co. However, with the increase of the content of Co, the spin reorientation gradually disappears and the antiferromagnetic transition changes to the ferromagnetic transition at the elevated temperature when x = 0.8. In addition, all of the magnetic phase transitions at the elevated temperature are always accompanied by the abnormal thermal expansion behaviors and an entropy change. Moreover, when x = 0.8, the coefficient of linear expansion is -1.89 × 10^-6 K^-1 (290-310K, △T =20 K), which is generally considered as the low thermal expansion.展开更多
文摘Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to 168 h are presented. Both the alloys were found to show identical behaviour of hardness with ageing time. Alloy with higher Zn and Mg content had higher hardness than the alloy with lower solute content. There were three ranges of temperature in which different types of precipitates formed and affected the hardness. Some of the grain boundaries were found to migrate and precipitate free zone has been observed.
基金financially supported by the National Natural Science Foundation of China (Nos. 51574027 and 51604206)the Financial Support from the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-22)
文摘The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.
基金Supported by the National Natural Science Foundation of China under Grant No 11374058
文摘Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.
基金Supported by the Natural Science Foundation of Zhejiang Province under Grant No LY15E010002the National Natural Science Foundation of China under Grant No 51671139
文摘FePt nanoparticles in mesoporous silica are fabricated by a simple stepwise synthesis strategy.A pre-annealing temperature-dependent coercivity-ageing effect in FePt nanoparticles is observed at room temperature.For facecentered cubic(fcc)structured FePt nanoparticles,the ageing effect is sensitive to the pre-annealing temperature,especially when the temperature is close to the phase-transition.The special magnetic behavior of FePt nanoparticles reveals that the physical properties gradually change between fee and face-centered tetragonal structures,and will deepen our understanding of the mechanism of such magnetism in FePt nanoparticles.
文摘The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the temperature range from 20 to 50℃. The varnish films were subjected to accelerated ageing by heating at 110℃ for diferent durations. The efect of the accelerated ageing on e' and e' were measured. The activation energy and the entropy change of dielectric relaxation for the dry films before and after ageing were also calculated. All the results obtained were recorded and discussed in correlation with the molecular structure of the investigated varnishes.
文摘Laboratory animals maintained on a reduced calorie but nutritionally adequate diet have extended life spans and lowered incidences of spontaneous and chemically induced cancers compared to ad libitum- fed counterparts. Many of the effects of dietary restriction on laboratory animals have been suggested to be related to a deceleration of the aging process. The inhibition of age-related changes in xenobiotic metabolizing enzyme activities by dietary restriction has previously been reported. Alterations of these enzyme activities may cause changes in metabolic activation of carcinogens and, therefore, carcinogen-DNA binding. DNA-repair capability has also been reported to be enhanced in diet-restricted rats. Using AFB1 as a model carcinogen, we have studied in vivo and in vitro hepatic AFB1 -DNA binding, demonstrating that dietary restriction (60% of ad libitum consumption) may decrease the metabolic activation of AFB1, and subsequently reduce AFB 1-DNA binding. Our preliminary results obtained from the AFB 1-DNA binding experiments in isolated hepatocytes suggest that the observed age-dependent reduction in AFB 1-DNA binding which may be attributed to a loss of metabolic activating capability was delayed in the diet-restricted rats.
文摘Rats of both sexes were fed on a basal feed containing 1% refined konjac meal (RKM) for 18 months and the effects of RKM on the cell aging were observed. A comparable group fed on the basic feed was used as the control. Results obtained demonstrate that the long-term feeding of RKM to rats can delay the course of cell aging of the gliocyte, cadiomyocyte, and the endothelial cell of the large and medium arteriases, hence it is likely to delay the occurrence of arteriosclerosis and improve the functions of the brain, heart and vascular system.
文摘Aim: To assess the seminal characteristics as well as the sexual behavior of men of various age groups to establish the presence of an aging effect on those characteristics. Methods: Semen samples were collected from men (n = 792) undergoing in vitro fertilization or intrauterine insemination in cases of female factor infertility only. Samples were collected using a seminal collection device at intercourse and evaluated manually according to World Health Organization (WHO) standards. Men were divided into four groups according to their ages: (i) 20-30, (ii) 31-40, (iii) 41-50 and (iv) 51-60 years, and their seminal characteristics and responses to a sexual behavior questionnaire were compared. Results: The data showed statistically significant differences in the seminal characteristics tested, most notably in the sperm concentration, motility, grade of motility, hypo-osmotic swelling and normal sperm morphology. Furthermore, the decline in normal sperm morphology with age was more pronounced when using strict criteria rather than WHO standards. There were also differences in total sperm count, total motile sperm and total functional sperm fraction (assessed by both WHO and strict criteria). Significant differences were also observed in the sexual behavior patterns in older men in terms of the number of years they have been trying to conceive, sexual frequency and sexual satisfaction. Conclusion: The data clearly illustrate an aging effect on semen characteristics and sexual behavior in men as they age. It is suggested that the aging effect be taken into consideration when proposing normal standard values for semen characteristics in routine semen analysis as outlined by WHO standards.
基金National Natural Science Foundation of China under Grant No.51578501 and No.51127005the Foundation for the Author of National Excellent Doctoral Dissertation of P R China under Grant No.201160+3 种基金the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR15E080001the National Basic Research Program of China(973 Project)under Grant No.2014CB047005the Fundamental Research Funds for the Central Universities under Grant No.2014FZA4016Zhejiang University K.P.Chao’s High Technology Development Foundation(2014)
文摘The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (V)-void ratio (e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR-V relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V-e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.
基金Supported by National Natural Science Foundation of China(50707012),State Key Laboratory of Electrical Insulation and Power Equipment(EIPE11205),"Qing Lan Project"in Jiangsu Province of China.
文摘The homogeneous dielectric barrier discharge(DBD) in atmospheric air is most favorable for polymer surface modification due to the low cost of operation and the ability of ambient on-line continuous uniform processing.In this paper,polypropylene(PP) films are treated using a homogeneous DBD plasma in atmospheric air.The surface properties of PP films are studied using contact angle and surface energy measurement,scanning electron microscopy (SEM) and Fourier transformed infrared spectroscopy(FTIR),and the aging effect after treatment when the treated materials are exposed to open air is also studied,with the modification mechanism being discussed.It is demonstrated that non-thermal plasmas generated by homogeneous DBD in atmospheric air is an effective way to enhance the surface properties of PP films.After the plasma treatment,the surface of PP film is etched,and oxygen-containing polar groups are introduced into the surface.These two processes can induce a remarkable decrease in water contact angle and a remarkable increase in surface energy,and the surface properties of PP films are improved accordingly.
基金supported by the National Natural Sci-ence Foundation of China (No. 40730740)the Beijing Natural Science Foundation (No. 4061002)the BeijingKey Technologies R&D Program (No. D0706007040291).
文摘Aging effect on the mobility and bioavallability of copper (Cu) was investigated using a spiked soil with different incubation periods from 3 to 56 d. Wheat was planted and earthworms were cultured separately in the incubated soils. The mobility of Cu in soil was evaluated by a chemical fractionation scheme and the toxicity and bioavailability were assessed by measuring the biomass and Cu concentration in tissues. Results showed that aging had a significant effect on Cu fraction distribution, of which Cu tended to incorporate from the exchangeable into more stable fractions such as the reducible and oxidisable fractions. However, aging had little effect on Cu bioavailability to wheat and earthworm. Comparing the soil being incubated for 3 d and 56 d, Cu concentration in wheat roots decreased from 14.5 to 12.8 mg/kg, and no significant changes in Cu concentration were observed in both wheat shoots and earthworms. The Cu concentration was around 2.0 and 50 mg/kg for wheat shoots and earthworms, respectively, irrespective of soil incubation time. The CaC12-extractable Cu had a linear relationship with Cu concentration in wheat roots (R2 = 0.65, P 〈 0.05), but no linear relationship can be found for wheat shoots and earthworms. Biological control may be more crucial for Cu accumulation in organism than the changes in soil Cu fraction caused by aging.
文摘Geosorbents are the main host of anthropogenic organic pollutants and play a vital role in their fate and transport in the natural environment.Soil and sediment are the most common and abundant geosorbents in the natural environment;their interactions with organic pollutants,especially sorption and desorption processes,have been extensively studied from the perspectives of thermodynamics and kinetics.Recently,the aging of organic pollutants in geosorbents has drawn increased attention,leading to an improved understanding of interactions between organic pollutants and geosorbents and informing remediation criteria.Aging has been deemed important in accurately assessing ecologic and health risks of organic pollutants,and both positive and negative impacts have been reported in studies of natural and artificial sorbents.This paper summarizes recent research progress on organic pollutant aging in geosorbents,including related mechanism research,influence factors,bioavailability assessments,and biological and physicochemical remediation of aged organic pollutants.We also discuss issues in the current research and bring forward suggestions for future study.
基金This work was supported by a Grant-in-Aid fOrEncouragement of Young Scientists (W.C.) (l998-1999) from the Ministry of Educat
文摘The effect of thermal cycling and aging in martensitic state in Ti-Pd-Ni alloys were investigated by DSC and TEM observations. It is shown that the thermal cycling causes the decreases in M, and Af temperatures in Ti50Pd50-xNix (x=10, 20, 30) alloys, but no obvious thermal cycling effect was observed in Ti50Pd50Pd40Ni10 alloys and the aging effect shows a curious feature, i.e., the Af temperature does not saturate even after relatively long time aging, which is considered to be due to the occurrence of recovery recrystallization during aging.
基金The authors gratefully acknowledge the valuable comments by Prof.Sebastian Münstermann from Steel Institute(IEHK),RWTH Aachen University,Germany.The work has been supported by the European Commission Research Fund for Coal and Steel(No.709711).Wenqi Liu is grateful to Shujing Li and Guangming Zeng from IEHK for data processing.
文摘This study aims to discover the stress-state dependence of the dynamic strain aging(DSA)effect on the deformation and fracture behavior of high-strength dual-phase(DP)steel at different deformation temperatures(25-400°C)and reveal the damage mechanisms under these various configurations.To achieve different stress states,predesigned specimens with different geometric features were used.Scanning electron microscopy was applied to analyze the fracture modes(e.g.,dimple or shear mode)and underlying damage mechanism of the investigated material.DSA is present in this DP steel,showing the Portevin-Le Chatelier(PLC)effect with serrated flow behavior,thermal hardening,and blue brittleness phenomena.Results show that the stress state contributes distinctly to the DSA effect in terms of the magnitude of thermal hardening and the pattern of blue brittleness.Either low stress triaxiality or Lode angle parameter promotes DSA-induced blue brittleness.Accordingly,the damage mechanisms also show dependence on the stress states in conjunction with the DSA effect.
基金supported by the Ph.D.Research Startup Funding of Eastern Liaoning University(Grant no.2019BS009).
文摘The woven glass fiber reinforced composites(GFRP)subjected to high-speed impact is investigated to identify the hygrothermal aging effect on the impact resistance.Both the hygrothermal aged and unaged glass/epoxy laminates are subjected to different impact velocities,which is confirmed as a sensitive factor for the failure modes and mechanisms.The results show the hygrothermal aging effect decreases the ballistic limit by 14.9%,but the influence on ballistic performance is limited within the impact velocity closed to the ballistic limit.The failure modes and energy dissipation mechanisms are confirmed to be slightly influenced by the hygrothermal aging effect.The hygrothermal aging effect induced localization of structural deformation and degradation of mechanical properties are the main reasons for the composite undergoing the same failure modes at smaller impact velocities.Based on the energy absorption mechanisms,analytical expressions predict the ballistic limit and energy absorption to reasonable accuracy,the underestimated total energy absorption results in a relatively poor agreement between the measured and predicted energy absorption efficiency.
基金Project supported by the State Key Program of National Natural Science Foundation of China (Grant No. 10735090)the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11005151)
文摘Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water contact angle of polytetrafiuoroethylene fihn drops from 114° to 46° and the surface free energy increases from 22.0 mJ/m2 to 59.1 mJ/m2. The optical emission spectrum indicates that there are reactive species such as O2+, O and He in the plasma plume. After plasma treatment, a highly crosslinking structure is formed on the fihn surface and the oxygen element is incorporated into the film surface in the forms of C O-C-, -C=O, and O C=O groups. Over a period of 10 days, the contact angle of the treated film is recovered by only about 10°, which indicates that the plasma surface modification is stable with time.
基金funded by the National Natural Science Foundation of China[grant numbers 41474001,41830110]the Fundamental Research Funds for Central Universities[grant number 2018B58214]+2 种基金the Surveying and Mapping Basic Research Program of National Administration of Surveying,Mapping and Geoinformation[grant number 13-01-05]the Major Scientific and Technological Projects of Jiangxi Water Resources Department[grant number kt201322]the Natural Science Foundation of Jiangsu Province,China[grant number BK20170869]。
文摘Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation is essential.This study evaluated the key external factors influencing horizontal and vertical displacements of Luobogang Reservoir Slope in Hanyuan County,China.Displacements had been monitored by a surface-displacement-monitoring system consisting of 118 GPS stations during 2012-2015.To identify the external driving factors,their influence zones,and slope responses,we analyzed 32 months of displacement measurements and other multi-source datasets using the empirical orthogonal function.Overall,the results show that slope aging effect,rainfall,and reservoir water levels are three main driving factors.For horizontal displacement,aging effect is the most critical factor and predominantly affects the edges of landslides,the gob cave,and the public building zones.The secondary factor is the reservoir water level,which mainly acts on the boundary between the slope and reservoir water surface.The closer the slope zone is to the reservoir water,the more significant the impact is.Regarding vertical displacement,the most important factor is rainfall.The vertical displacement caused by rainfall accounts for 56.76% of the total vertical displacements.However,rainfall induces elastic displacements that generally cause less damage to the slope.The secondary factor is aging effect,and the vertical displacement caused by aging effect accounts for 9.42%.However,seven individual zones are highly affected by slope aging effect,which is consistent with the distribution of public buildings.
基金Project supported by Shanghai Pujiang Project (05PJ14082)Shanghai Shuguang Project (04SG48)
文摘Ferroelectric devices are widely applied in many fields, such as energy conversion and communication. The aging effect in ferroelectric materials plays a central role in the reliability of the related equipments. But it is very difficult to understand the origin of aging effect in ferroelectrics because these materials possess different defects and exhibit various aging behavior. The reverse transition temperature in lead titanate doped with lanthanum increases during aging at ferroelectric phase was reported. It is well known that lattice defects, such as vacancies and solute atoms, are ubiquitous in crystalline solids. These point defects affect physical properties in ferroelectrics significantly. The abnormal increase of the reverse transition temperature was discussed in terms of diffusion of point defects during aging. Dielectric performance in the material after aging was measured and discussed as well.
基金supported by the University of Malaya Postgraduate Research(PPP)(No.PG062-2016A)RU Grant-Faculty Program(No.GPF042B-2018).
文摘The characteristics of a low power 50 Hz argon plasma for surface treatment of polytetrafluoroethylene(PTFE)film is presented in this article.The current–voltage behavior of the discharge and time-varying intensity of the discharge showed that a DC glow discharge was generated in reversed polarity at every half-cycle.At discharge power between 0.5 and 1 W,the measured electron temperature and density were 2–3 eV and∼10^(8) cm^(−3),respectively.The optical emission spectrum of the argon plasma showed presence of some‘impurity species’such as OH,N_(2) and H,which presumably originated from the residual air in the discharge chamber.On exposure of PTFE films to the argon glow plasma at pressure 120 Pa and discharge power 0.5 to 1 W,the water contact angle reduced by 4%to 20%from the original 114°at pristine condition,which confirms improvement of its surface wettability.The increase in wettability was attributed to incorporation of oxygen-containing functional groups on the treated surface and concomitant reduction in fluorine as revealed by the XPS analysis and increase in surface roughness analyzed from the atomic force micrographs.Ageing upon storage in ambient air showed retention of the induced increase in surface wettability.
基金Supported by the National Natural Science Foundation of China under Grant No 51172012the Fundamental Research Funds for the Central Universities
文摘Antiperovskite compounds Mn3Ag1-xCoxN (x =0.2, 0.5 and 0.8) are synthesized and the doping effect of the magnetic element Co at the Ag site is investigated. The crystal structure is not changed by the introduction of Co. However, with the increase of the content of Co, the spin reorientation gradually disappears and the antiferromagnetic transition changes to the ferromagnetic transition at the elevated temperature when x = 0.8. In addition, all of the magnetic phase transitions at the elevated temperature are always accompanied by the abnormal thermal expansion behaviors and an entropy change. Moreover, when x = 0.8, the coefficient of linear expansion is -1.89 × 10^-6 K^-1 (290-310K, △T =20 K), which is generally considered as the low thermal expansion.