The term "Grid" is increasingly appearing in computer literature, generally referring to some form of system framework into which hardware, software, or information resources can be plugged, and which permit...The term "Grid" is increasingly appearing in computer literature, generally referring to some form of system framework into which hardware, software, or information resources can be plugged, and which permits easy configuration and creation of new functionality from existing resources. In this article, first, we introduce the concepts of Grid and Agent Grid based on our own understanding. Then we compare Agent Grid with the traditional Multi-Agent System to make the concept and characters of Agent Grid much clearer. Next, the key techniques of Agent Grid, such as Agent Grid System Architecture, System Models, Intelligent Agents and Agent-Based System Resource Management, are thoroughly illustrated. Finally, we briefly discusse the future applications of Agent Grid.展开更多
This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system...This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system fault.The proposed hybrid multi-agent framework is a hybrid of both centralized and decentralized scheme to allow distributed intelligent agent in the smart grid system to make fast local decision while allowing the slower central controller to judge the effectiveness of the decision made by the local agents and to suggest more optimal solutions.展开更多
This paper presents the operation of a Multi-agent system (MAS) for the control of a smart grid. The proposed Multi-agent system consists of seven types of agents: Single Smart Grid Controller (SGC), Load Agents (LAGs...This paper presents the operation of a Multi-agent system (MAS) for the control of a smart grid. The proposed Multi-agent system consists of seven types of agents: Single Smart Grid Controller (SGC), Load Agents (LAGs), a Wind Turbine Agent (WTAG), Photo-Voltaic Agents (PVAGs), a Micro-Hydro Turbine Agent (MHTAG), Diesel Agents (DGAGs) and a Battery Agent (BAG). In a smart grid LAGs act as consumers or buyers, WTAG, PVAGs, MHTAG & DGAGs acts as producers or sellers and BAG act as producer/consumer or seller/buyer. The paper demonstrates the use of a Multi-agent system to control the smart grid in a simulated environment. In order to validate the performance of the proposed system, it has been applied to a simple model system with different time zone i.e. day time and night time and when power is available from the grid and when there is power shedding. Simulation results show that the proposed Multi-agent system can perform the operation of the smart grid efficiently.展开更多
The future of electricity systems will compose of small-scale generation and distribution where end-users will be active participants with localized energy management systems that are able to interact on a free energy...The future of electricity systems will compose of small-scale generation and distribution where end-users will be active participants with localized energy management systems that are able to interact on a free energy market. Software agents will most likely control power assets and interact together to decide the best and safest configuration of the power grid system. This paper presents a design of agents that can be deployed in real-time with capabilities that include optimization of resources, intensive computation, and appropriate decision-making. Jordan 51-bus system has been used for simulation with a total generation capacity of 4050 MW of which 230 MW represent</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> renewable energy. The economic analyses demonstrated the use of smart grid technologies with 2016 generation</span><span style="font-family:""><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">load profiles for nominal liquified gas (NLG) prices and </span><span style="font-family:Verdana;">±</span><span style="font-family:Verdana;">20% sensitivity analysis. The results have shown variations in the range of 1% in the price of MWh with smart grid technologies. These variations are mainly driven by the fact that agents shift power generation to renewable power plants to produce maximum power at peak hours. As a result, there is a positive economic impact in both NLG </span><span style="font-family:Verdana;">±</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">20% sensitivity analysis, due to the fact that agents coordinate to better displace expensive thermal generation with renewable generation. It is evident that renewable resources compensate for power at peak times and provide economic benefits and savings.展开更多
One of the interesting topics in grid computing systems is resources discovery. After the failure of a resource in a chain of resources made for a specific task in grid environment, discovering and finding a new resou...One of the interesting topics in grid computing systems is resources discovery. After the failure of a resource in a chain of resources made for a specific task in grid environment, discovering and finding a new resource that reconstructs the chain is an important topic. In this study, with defining new agent that is called task agent, and by proposing an algorithm, we will increase the fault tolerance against probable failure of a resource in the resource chain.展开更多
New needs and emerging societal constraints have put the emphasis on the inadequacy of the actual electrical grid. Indeed, it is impossible, or at least very hard, to 1) integrate renewable energy sources at a great s...New needs and emerging societal constraints have put the emphasis on the inadequacy of the actual electrical grid. Indeed, it is impossible, or at least very hard, to 1) integrate renewable energy sources at a great scale within the actual electric grid, 2) enable communications between the various power suppliers and consumers, 3) design several different services that meet the needs of a wide range of end users. A key solution to these issues consists in using Smart Grids (SG). SG can efficiently control power flows by means of Information Technology (IT). Technically, a SG consists of a power system and a bidirectional communication system. Multi-Agent Systems (MAS) constitute a possible technology that can be applied to control and monitor the operation of power grids. Moreover, MAS exhibit distribution, adaptive and intelligent features. The goal of this paper is to propose a framework of qualification and evaluation for comparison SG approaches. First, a set of features of importance for smart grids definition is identified. Then, in a second step, some criteria are given to evaluate the impact of SG on the society. Finally, these features are applied to existing MAS approaches addressing SG in order to understand and compare their different contributions.展开更多
The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber...The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber physical system(CPS) presents a new approach for the distributed hierarchical engineering system,with micro-grids included.The object of this paper is to integrate the CPS concept with MAS technology and propose a new control framework for micro-grids.With the analysis of the operating mode and control method of micro-grids,the cyber physical control concepts of ontologybased semantic agent are discussed.Then an MAS-based architecture of cyber physical micro-grid system and an intelligent electronic device(IED) function structure are proposed.Finally,in order to operate and test the cyber physical micro-grid concept,an integrated simulation model is presented.展开更多
We analyze the deficiencies of current application systems, and discuss the key requirements of distributed Geographie Information serviee (GIS), We construct the distributed GIS on grid platform. Considering the fl...We analyze the deficiencies of current application systems, and discuss the key requirements of distributed Geographie Information serviee (GIS), We construct the distributed GIS on grid platform. Considering the flexibility and efficiency, we integrate the mobile agent technology into the system. We propose a new prototype system, the Geographic Information Grid System (GIGS) based on mobile agent. This system has flexible services and high performance, and improves the sharing of distributed resources. The service strategy of the system and the examples are also presented.展开更多
A group of agents are intimately cooperated to set the assessment indices, establish the weight of each index in overall result of evaluation, collect the experts' scores given to each available resource, and the man...A group of agents are intimately cooperated to set the assessment indices, establish the weight of each index in overall result of evaluation, collect the experts' scores given to each available resource, and the manufacturing resource whose overall assessment value is highest is taken as the optimal choice. Architecture of the proposed system is outlined and an example is offered to show the process of accomplishing the assessment.展开更多
文摘The term "Grid" is increasingly appearing in computer literature, generally referring to some form of system framework into which hardware, software, or information resources can be plugged, and which permits easy configuration and creation of new functionality from existing resources. In this article, first, we introduce the concepts of Grid and Agent Grid based on our own understanding. Then we compare Agent Grid with the traditional Multi-Agent System to make the concept and characters of Agent Grid much clearer. Next, the key techniques of Agent Grid, such as Agent Grid System Architecture, System Models, Intelligent Agents and Agent-Based System Resource Management, are thoroughly illustrated. Finally, we briefly discusse the future applications of Agent Grid.
基金funded by the ARC Linkage Grant LP LP0991428a URC Research Partnerships Grants Scheme, from the University of Wollongong
文摘This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system fault.The proposed hybrid multi-agent framework is a hybrid of both centralized and decentralized scheme to allow distributed intelligent agent in the smart grid system to make fast local decision while allowing the slower central controller to judge the effectiveness of the decision made by the local agents and to suggest more optimal solutions.
文摘This paper presents the operation of a Multi-agent system (MAS) for the control of a smart grid. The proposed Multi-agent system consists of seven types of agents: Single Smart Grid Controller (SGC), Load Agents (LAGs), a Wind Turbine Agent (WTAG), Photo-Voltaic Agents (PVAGs), a Micro-Hydro Turbine Agent (MHTAG), Diesel Agents (DGAGs) and a Battery Agent (BAG). In a smart grid LAGs act as consumers or buyers, WTAG, PVAGs, MHTAG & DGAGs acts as producers or sellers and BAG act as producer/consumer or seller/buyer. The paper demonstrates the use of a Multi-agent system to control the smart grid in a simulated environment. In order to validate the performance of the proposed system, it has been applied to a simple model system with different time zone i.e. day time and night time and when power is available from the grid and when there is power shedding. Simulation results show that the proposed Multi-agent system can perform the operation of the smart grid efficiently.
文摘The future of electricity systems will compose of small-scale generation and distribution where end-users will be active participants with localized energy management systems that are able to interact on a free energy market. Software agents will most likely control power assets and interact together to decide the best and safest configuration of the power grid system. This paper presents a design of agents that can be deployed in real-time with capabilities that include optimization of resources, intensive computation, and appropriate decision-making. Jordan 51-bus system has been used for simulation with a total generation capacity of 4050 MW of which 230 MW represent</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> renewable energy. The economic analyses demonstrated the use of smart grid technologies with 2016 generation</span><span style="font-family:""><span style="font-family:Verdana;">—</span><span style="font-family:Verdana;">load profiles for nominal liquified gas (NLG) prices and </span><span style="font-family:Verdana;">±</span><span style="font-family:Verdana;">20% sensitivity analysis. The results have shown variations in the range of 1% in the price of MWh with smart grid technologies. These variations are mainly driven by the fact that agents shift power generation to renewable power plants to produce maximum power at peak hours. As a result, there is a positive economic impact in both NLG </span><span style="font-family:Verdana;">±</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">20% sensitivity analysis, due to the fact that agents coordinate to better displace expensive thermal generation with renewable generation. It is evident that renewable resources compensate for power at peak times and provide economic benefits and savings.
文摘One of the interesting topics in grid computing systems is resources discovery. After the failure of a resource in a chain of resources made for a specific task in grid environment, discovering and finding a new resource that reconstructs the chain is an important topic. In this study, with defining new agent that is called task agent, and by proposing an algorithm, we will increase the fault tolerance against probable failure of a resource in the resource chain.
文摘New needs and emerging societal constraints have put the emphasis on the inadequacy of the actual electrical grid. Indeed, it is impossible, or at least very hard, to 1) integrate renewable energy sources at a great scale within the actual electric grid, 2) enable communications between the various power suppliers and consumers, 3) design several different services that meet the needs of a wide range of end users. A key solution to these issues consists in using Smart Grids (SG). SG can efficiently control power flows by means of Information Technology (IT). Technically, a SG consists of a power system and a bidirectional communication system. Multi-Agent Systems (MAS) constitute a possible technology that can be applied to control and monitor the operation of power grids. Moreover, MAS exhibit distribution, adaptive and intelligent features. The goal of this paper is to propose a framework of qualification and evaluation for comparison SG approaches. First, a set of features of importance for smart grids definition is identified. Then, in a second step, some criteria are given to evaluate the impact of SG on the society. Finally, these features are applied to existing MAS approaches addressing SG in order to understand and compare their different contributions.
基金National Natural Science Foundation of China(No.51477097)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,China(No.LAPS13009)National High-Technology Research and Development Program of China(863 Program)(No.2013BAA01B04)
文摘The distributed hierarchical control based on multi-agent system(MAS) is the main control method of micro-grids.By allowing more flexible interactions between computing components and their physical environments,cyber physical system(CPS) presents a new approach for the distributed hierarchical engineering system,with micro-grids included.The object of this paper is to integrate the CPS concept with MAS technology and propose a new control framework for micro-grids.With the analysis of the operating mode and control method of micro-grids,the cyber physical control concepts of ontologybased semantic agent are discussed.Then an MAS-based architecture of cyber physical micro-grid system and an intelligent electronic device(IED) function structure are proposed.Finally,in order to operate and test the cyber physical micro-grid concept,an integrated simulation model is presented.
基金Supported by the National Technology Research and De-velopment Programof China (863 Program,2002AA135340) and the Na-tional Key Basic Research and Development Program ( 973 Program,2004CB318206)
文摘We analyze the deficiencies of current application systems, and discuss the key requirements of distributed Geographie Information serviee (GIS), We construct the distributed GIS on grid platform. Considering the flexibility and efficiency, we integrate the mobile agent technology into the system. We propose a new prototype system, the Geographic Information Grid System (GIGS) based on mobile agent. This system has flexible services and high performance, and improves the sharing of distributed resources. The service strategy of the system and the examples are also presented.
基金Supported by Foundation from Key Lab of Digital Manufacturing of Hubei Province.(SZ0608)
文摘A group of agents are intimately cooperated to set the assessment indices, establish the weight of each index in overall result of evaluation, collect the experts' scores given to each available resource, and the manufacturing resource whose overall assessment value is highest is taken as the optimal choice. Architecture of the proposed system is outlined and an example is offered to show the process of accomplishing the assessment.