A magnetic field sensor with a magnetic fluid(MF)-coated intermodal interferometer is proposed and experimentally demonstrated. The interferometer is formed by sandwiching a segment of single mode fiber(SMF) between a...A magnetic field sensor with a magnetic fluid(MF)-coated intermodal interferometer is proposed and experimentally demonstrated. The interferometer is formed by sandwiching a segment of single mode fiber(SMF) between a segment of multi-mode fiber(MMF) and a spherical structure. It can be considered as a cascade of the traditional SMF-MMF-SMF structure and MMF-SMF-sphere structure. The transmission spectral characteristics change with the variation of applied magnetic field. The experimental results exhibit that the magnetic field sensitivities for wavelength and transmission loss are 0.047 nm/m T and 0.215 d B/m T for the interference dip around 1 535.36 nm. For the interference dip around 1548.41 nm,the sensitivities are 0.077 nm/m T and 0.243 d B/m T. Simultaneous measurement can be realized according to the different spectral responses.展开更多
基金supported by the National Natural Science Foundation of China(No.61475118)the National High-Tech Research and Development Program of China(863 Program)(No.2013AA014201)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics(No.IOSKL2015KF06)
文摘A magnetic field sensor with a magnetic fluid(MF)-coated intermodal interferometer is proposed and experimentally demonstrated. The interferometer is formed by sandwiching a segment of single mode fiber(SMF) between a segment of multi-mode fiber(MMF) and a spherical structure. It can be considered as a cascade of the traditional SMF-MMF-SMF structure and MMF-SMF-sphere structure. The transmission spectral characteristics change with the variation of applied magnetic field. The experimental results exhibit that the magnetic field sensitivities for wavelength and transmission loss are 0.047 nm/m T and 0.215 d B/m T for the interference dip around 1 535.36 nm. For the interference dip around 1548.41 nm,the sensitivities are 0.077 nm/m T and 0.243 d B/m T. Simultaneous measurement can be realized according to the different spectral responses.