Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly ...Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly participating in day-ahead scheduling to support demand response.The first stage is on the profit of aggregators and peak load of the grid.The line loss and voltage deviation of regulation are considered to ensure stable operation of the power grid at the second stage,which guarantees the fairness of the regulation and the comfort of users.A single tempera-ture adjustment strategy is used to control TCLs to maximize the response potential in the third stage.Finally,digital simulation based on the IEEE 33-bus distribution network system proves that the proposed three-stage scheduling strategy can keep the voltage deviation within±5%in different situations.In addition,the Gini coefficient of distribu-tion increases by 20%and the predicted percentage of dissatisfied is 48%lower than those without distribution.展开更多
Due to their heat/cool storage characteristics, thermostatically controlled loads(TCLs) play an important role in demand response programmers. However, the modeling of the heat/cool storage characteristic of large num...Due to their heat/cool storage characteristics, thermostatically controlled loads(TCLs) play an important role in demand response programmers. However, the modeling of the heat/cool storage characteristic of large numbers of TCLs is not simple. In this paper, the heat exchange power is adopted to calculate the power instead of the average power, and the relationship between the heat exchange power and energy storage is considered to develop an equivalent storage model, based on which the time-varying power constraints and the energy storage constraints are developed to establish the overall day-ahead schedulingmodel. Finally, the proposed scheduling method is verified using the simulation results of a six-bus system.展开更多
This paper studies the coordination of heterogeneous thermostatically controlled loads(TCLs)to provide the real-time ancillary services.A market-based control framework is adopted for its advantages.The first advantag...This paper studies the coordination of heterogeneous thermostatically controlled loads(TCLs)to provide the real-time ancillary services.A market-based control framework is adopted for its advantages.The first advantage is that the demand curve-oriented approach makes it possible to form a unified control scheme for heterogeneous loads without identifying their different characteristics.The second one is that the broadcast price signal helps simplify the downlink control and reduce the implementation cost.Then,the separate demand curve construction strategies based on a virtual price for different types of TCLs are presented.The flexibility of each TCL is reflected through the curve,and its practical constraints,i.e.,comfort requirements of users and operation constraints of devices,are satisfied explicitly.To ensure the control fairness and full utilization for the regulation ability of TCL cluster,a comfort-levelequality principle is applied in demand curve construction.Simulations are carried out to verify the effectiveness of the proposed method in providing frequency regulation services,for which a regulation capacity estimation method is developed.Finally,a series of case studies are conducted considering the practical situations,e.g.,model errors,imperfect communication and sudden load change after the end of services.展开更多
The increasing penetration of renewable energy sources (RESs) brings more power generation fluctuations into power systems, which puts forward higher requirement on the regulation capacities for maintaining the power ...The increasing penetration of renewable energy sources (RESs) brings more power generation fluctuations into power systems, which puts forward higher requirement on the regulation capacities for maintaining the power balance between supply and demand. In addition to traditional generators for providing regulation capacities, the progressed information and communication technologies enable an alternative method by controlling flexible loads, especially thermostatically controlled loads (TCLs) for regulation services. This paper investigates the modeling and control strategies of aggregated TCLs as the virtual energy storage system (VESS) for demand response. First, TCLs are modeled as VESSs and compared with the traditional energy storage system (ESS) to analyze their characteristic differences. Then, the control strategies of VESS are investigated in microgrid and main grid aspects, respectively. It shows that VESS control strategies can play important roles in frequency regulation and voltage regulation for power systems’ stability. Finally, future research directions of VESS are prospected, including the schedulable potential evaluation, modeling of TCLs, hierarchical control strategies of VESS considering ESSs and RESs and reliability and fast response in frequency control for VESS.展开更多
文摘利用温控负荷(thermostatically controlled load,TCL)作为调频资源参与电网调频是应对高比例可再生能源发电并网导致电力系统维持频率稳定能力下降的有效手段。文中提出一种基于动态下垂控制的TCL一次调频控制策略,考虑聚合商TCL平均温度状态(state of temperature,SOT)、调频容量和系统频率变化率,构建动态下垂控制模型,实时调整下垂控制系数,改变TCL聚合商调频参与度。当向上调频时,锁定关状态TCL;当向下调频时,锁定开状态TCL,确保频率快速恢复至额定值附近。同时,为确保用户的舒适度,利用TCL的SOT优先级排序列表派遣法,确定TCL参与调频顺序。在Matlab/Simulink平台上进行仿真分析,仿真结果验证了文中所提策略在确保用户舒适度、改善频率质量等方面的有效性。
基金supported in part by the National Natural Science Foundation of China(No.52007126 and No.U2166209).
文摘Thermostatically controlled loads(TCLs)are regarded as having potential to participate in power grid regulation.This paper proposes a scheduling strategy with three-stage optimization for regional aggregators jointly participating in day-ahead scheduling to support demand response.The first stage is on the profit of aggregators and peak load of the grid.The line loss and voltage deviation of regulation are considered to ensure stable operation of the power grid at the second stage,which guarantees the fairness of the regulation and the comfort of users.A single tempera-ture adjustment strategy is used to control TCLs to maximize the response potential in the third stage.Finally,digital simulation based on the IEEE 33-bus distribution network system proves that the proposed three-stage scheduling strategy can keep the voltage deviation within±5%in different situations.In addition,the Gini coefficient of distribu-tion increases by 20%and the predicted percentage of dissatisfied is 48%lower than those without distribution.
基金supported in part by the Postgraduate Innovation Cultivating Project in Jiangsu Province (No. KYCX18_1221)the National Natural Science Foundation of China (No. 51707099)China Postdoctoral Science Foundation (No. 2017M611859)
文摘Due to their heat/cool storage characteristics, thermostatically controlled loads(TCLs) play an important role in demand response programmers. However, the modeling of the heat/cool storage characteristic of large numbers of TCLs is not simple. In this paper, the heat exchange power is adopted to calculate the power instead of the average power, and the relationship between the heat exchange power and energy storage is considered to develop an equivalent storage model, based on which the time-varying power constraints and the energy storage constraints are developed to establish the overall day-ahead schedulingmodel. Finally, the proposed scheduling method is verified using the simulation results of a six-bus system.
基金supported by National Key R&D Program of China(No.2017YFB0903000)
文摘This paper studies the coordination of heterogeneous thermostatically controlled loads(TCLs)to provide the real-time ancillary services.A market-based control framework is adopted for its advantages.The first advantage is that the demand curve-oriented approach makes it possible to form a unified control scheme for heterogeneous loads without identifying their different characteristics.The second one is that the broadcast price signal helps simplify the downlink control and reduce the implementation cost.Then,the separate demand curve construction strategies based on a virtual price for different types of TCLs are presented.The flexibility of each TCL is reflected through the curve,and its practical constraints,i.e.,comfort requirements of users and operation constraints of devices,are satisfied explicitly.To ensure the control fairness and full utilization for the regulation ability of TCL cluster,a comfort-levelequality principle is applied in demand curve construction.Simulations are carried out to verify the effectiveness of the proposed method in providing frequency regulation services,for which a regulation capacity estimation method is developed.Finally,a series of case studies are conducted considering the practical situations,e.g.,model errors,imperfect communication and sudden load change after the end of services.
基金supported in part by the National Key Research and Development Program of China under Grant 2016YFB0901100in part by the National Natural Science Foundation of China(NSFC)under Grant 51577167.
文摘The increasing penetration of renewable energy sources (RESs) brings more power generation fluctuations into power systems, which puts forward higher requirement on the regulation capacities for maintaining the power balance between supply and demand. In addition to traditional generators for providing regulation capacities, the progressed information and communication technologies enable an alternative method by controlling flexible loads, especially thermostatically controlled loads (TCLs) for regulation services. This paper investigates the modeling and control strategies of aggregated TCLs as the virtual energy storage system (VESS) for demand response. First, TCLs are modeled as VESSs and compared with the traditional energy storage system (ESS) to analyze their characteristic differences. Then, the control strategies of VESS are investigated in microgrid and main grid aspects, respectively. It shows that VESS control strategies can play important roles in frequency regulation and voltage regulation for power systems’ stability. Finally, future research directions of VESS are prospected, including the schedulable potential evaluation, modeling of TCLs, hierarchical control strategies of VESS considering ESSs and RESs and reliability and fast response in frequency control for VESS.