期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China
1
作者 Junyu Xie Jianyong Gao +7 位作者 Hanbing Cao Jiahui Li Xiang Wang Jie Zhang Huisheng Meng Jianping Hong Tingliang Li Minggang Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1034-1047,共14页
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p... We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3). 展开更多
关键词 reclamation time manure combined with inorganic fertilizer soil aggregate stability cementing agents CaCO_(3)
下载PDF
Preliminary Study on the Effect of Different Ecological Cultivation Modes on the Water Stability of Soil Aggregates in Rubber Based Agroforestry Systems
2
作者 Shiyun Zhan Fengyue Qin +4 位作者 Dongling Qi Zhixiang Wu Chuan Yang Yingying Zhang Qingmao Fu 《Open Journal of Ecology》 2023年第11期782-793,共12页
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re... Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance. 展开更多
关键词 Ecological Complex Cultivation Rubber Plantation Soil aggregates Soil Aggregate Water stability Rubber Based Agroforestry Systems
下载PDF
Impact of wetting-drying cycles and acidic conditions on the soil aggregate stability of yellow‒brown soil
3
作者 XIA Zhenyao NI Yuanzhen +2 位作者 LIU Deyu WANG Di XIAO Hai 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2075-2090,共16页
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c... Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA. 展开更多
关键词 Yellow‒brown soil Wetting-drying cycles Acidic conditions Soil aggregate stability Soil disintegration
下载PDF
Fragmentation process of soil aggregates under concentrated water flow in red soil hilly region with different land use patterns
4
作者 WEN Li-li WANG Jin-yue +1 位作者 DENG Yu-song DUAN Xiao-qian 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3233-3249,共17页
The hilly area of red soil in the central subtropical region of China has a long history of severe soil erosion due to its abundance of water,heat,and intense agricultural and forestry activities.The Sandshale red soi... The hilly area of red soil in the central subtropical region of China has a long history of severe soil erosion due to its abundance of water,heat,and intense agricultural and forestry activities.The Sandshale red soil area is hot and rainy,the local land utilization rate and replanting index are high,and the soil easily weathers and erodes,resulting in infertile and sandy soils,extensive soil erosion and large erosion,with far-reaching impacts.In this study,the stability of soil aggregates was studied by the wet sieving method and Le Bissonais(LB)method in six land use patterns in the Sandshale red soil area,including natural forest(NF),Pinus massoniana(PM),Eucalyptus urophylla×E.grandis(EU),orchard(OR),wasteland(WL)and arable land(AL).The transport damage characteristics of the soil aggregates under concentrated water flow were analyzed by using the soil aggregates to simulate the soil surface roughness in the field using a steel scouring flume with a variable slope.The results showed that:(1)the total soil porosity of the natural forest was the highest,with 56.51%in A layer,which was 4.99%higher than the B layer,and the organic matter content ranged from 10.69 to 29.94 g.kg-1 and was highest in NF and lowest in AL;(2)the maximum mean weight diameter(MWD)obtained by the wet sieving method was 4.81 mm for natural forest,and the MWD was the lowest in OR and AL at 2.45-2.77mm.The MWD measured by the LB method was also highest in NF and lowest in AL.The contents of Fed and Ald have a strong correlation with the stability parameters of soil aggregates;(3)the Wr/Wi results for the six land use patterns were NF>PM>EU>WL>OR>AL;the NF had the strongest soil aggregate stability,followed by WL,PM and EU,and AL and OR had the weakest;the stability of soil aggregates gradually weakened as the soil depth increased.Comprehensive analysis shows that forest land has high soil stability and obvious advantages in soil erosion resistance.Strengthening the construction of artificial forests can be an important means to reduce soil erosion in red soil hilly region. 展开更多
关键词 Soil aggregates Land use Aggregate stability Fragmentation process
下载PDF
Soil Aggregate Stability and Aggregate-Associated Carbon Under Different Tillage Systems in the North China Plain 被引量:21
5
作者 DU Zhang-liu REN Tu-sheng +2 位作者 HU Chun-sheng ZHANG Qing-zhong Humberto Blanco-Canqui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第11期2114-2123,共10页
The inlfuences of tillage systems on soil carbon (C) stocks have been studied extensively, but the distribution of soil C within aggregate fractions is not well understood. The objective of this study was to determi... The inlfuences of tillage systems on soil carbon (C) stocks have been studied extensively, but the distribution of soil C within aggregate fractions is not well understood. The objective of this study was to determine the inlfuences of various tillage systems on soil aggregation and aggregate-associated C under wheat (Triticum aestivum L.) and corn (Zea mays L.) double cropping systems in the North China Plain. The experiment was established in 2001, including four treatments:moldboard plow (MP) with residue (MP+R) and without residue (MP-R), rotary tillage with residue (RT), and no-till with residue (NT). In 2007 soil samples were collected from the 0-5, 5-10, and 10-20 cm depths, and were separated into four aggregate-size classes (〉2 000, 250-2 000, 53-250, and〈53 μm) by wet-sieving method. Aggregate-associated C was determined, and the relationships between total soil C concentration and aggregation-size fractions were examined. The results showed that NT and RT treatments signiifcantly increased the proportion of macroaggregate fractions (〉2 000 and 250-2 000 μm) compared with the MP-R and MP+R treatments. Averaged across all depths, mean weight diameters of aggregates (MWD) in NT and RT were 47 and 20% higher than that in MP+R. The concentration of bulk soil organic C was positively correlated with MWD (r=0.98; P=0.024) and macroaggregate fraction (r=0.96; P=0.036) in the 0-5 cm depth. In the 0-20 cm depth, comparing with MP+R, total C occluded in the〉2 000 μm fraction was increased by 9 and 6%under NT and RT, respectively. We conclude that adoption of conservation tillage system, especially no-till, can increase soil macro-aggregation and total C accumulation in macroaggregates, which may improve soil C sequestration in the intensive agricultural region of the North China Plain. 展开更多
关键词 tillage systems aggregate stability aggregate-associated C
下载PDF
Aggregate binding agents improve soil aggregate stability in Robinia pseudoacacia forests along a climatic gradient on the Loess Plateau,China 被引量:5
6
作者 JING Hang MENG Min +1 位作者 WANG Guoliang LIU Guobin 《Journal of Arid Land》 SCIE CSCD 2021年第2期165-174,共10页
The distribution of binding agents(i.e.,soil organic carbon(SOC)and glomalin-related soil protein(GRSP))in soil aggregates was influenced by many factors,such as plant characteristics and soil properties.However,how t... The distribution of binding agents(i.e.,soil organic carbon(SOC)and glomalin-related soil protein(GRSP))in soil aggregates was influenced by many factors,such as plant characteristics and soil properties.However,how these factors affect binding agents and soil aggregate stability along a climatic gradient remained unclear.We selected the Robinia pseudoacacia L.forests from semi-arid to semi-humid of the Loess Plateau,China to analyze the plant biomass,soil physical-chemical properties,SOC and GRSP distribution in different sized soil aggregates.We found that from semi-arid to semi-humid forests:(1)the proportion of macro-aggregates(>0.250 mm)significantly increased(P<0.05),whereas those of micro-aggregates(0.250–0.053 mm)and fine materials(<0.053 mm)decreased and soil aggregate stability was increased;(2)the contents of SOC and GRSP in macro-aggregates and micro-aggregates significantly increased,and those in fine materials decreased;(3)the contribution of SOC to soil aggregate stability was greater than those of total GRSP and easily extractable GRSP;(4)soil properties had greater influence on binding agents than plant biomass;and(5)soil aggregate stability was enhanced by increasing the contents of SOC and GRSP in macro-aggregates and soil property was the important part during this process.Climate change from semi-arid to semi-humid forests is important factor for soil structure formation because of its positive effect on soil aggregates. 展开更多
关键词 binding agents GLOMALIN organic carbon soil property soil aggregate stability
下载PDF
Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China 被引量:5
7
作者 Guannv Gao Xueman Huang +7 位作者 Haocheng Xu Yi Wang Weijun Shen Wen Zhang Jinliu Yan Xiaoyan Su Shushou Liao Yeming You 《Forest Ecosystems》 SCIE CSCD 2022年第6期823-837,共15页
Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil ... Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality. 展开更多
关键词 Broadleaved tree species Chinese fir plantation Soil aggregate stability HUMUS Bacterial and fungal communities High-throughput sequencing
下载PDF
Assessment of soil erodibility and aggregate stability for different parts of a forest road 被引量:2
8
作者 Aidin Parsakhoo Majid Lotfalian +1 位作者 Ataollah Kavian Seyed Ataollah Hosseini 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第1期193-200,共8页
We measured erodibility and mean weight diameter (MWD) of soil aggregates in different parts of a forest road. Samples of topsoil were collected from cutslope, fillslope, road surface and forest ground to assess the... We measured erodibility and mean weight diameter (MWD) of soil aggregates in different parts of a forest road. Samples of topsoil were collected from cutslope, fillslope, road surface and forest ground to assess the texture, bulk density, moisture, CaCO3 and organic matter. Soil aggregate stability was determined by wet sieving. Soil erodibility on the road surface was 2.3 and 1.3 times higher than on the fillslope and cutslope, respectively. The forest soil had the lowest erodibility. Aggregate stability of cutslope and road surface were low and very low, respectively. There was a significant negative relationship between cutslope erodibility with CaCO3 and sand content. Cutslope erodibility increased with increasing silt, clay and moisture content. On fillslopes, MWD increased with in-creasing rock fragment cover, plant cover, litter cover, organic matter and sand. There was a strong negative correlation between fillslope erodibility and organic matter, sand and MWD. There was no significant difference between erodibility of bare soil and soils beneathRubus hyrcanusL. and Philonotis marchica (Hedw.) Brid. 展开更多
关键词 road prism soil erodibility aggregate stability wet sieving Lat Talar forest
下载PDF
Changes in soil organic carbon and aggregate stability following a chronosequence of Liriodendron chinense plantations 被引量:2
9
作者 Qicong Wu Xianghe Jiang +2 位作者 Qianwen Lu Jinbiao Li Jinlin Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第1期355-362,共8页
The objectives for this study were to determine changes in soil organic carbon(SOC)components and water-stable aggregates for soil profi les from diff erent ages of plantations of Liriodendron chinense and to clarify ... The objectives for this study were to determine changes in soil organic carbon(SOC)components and water-stable aggregates for soil profi les from diff erent ages of plantations of Liriodendron chinense and to clarify which organic carbon component is more closely associated with the formation and stability of soil aggregates.Three layers of soil(depths 0–20 cm,20–40 cm,40–60 cm)were collected from young,half-mature and mature stages of L.chinense.SOC,readily oxidizable organic carbon,chemically stable organic carbon and aggregate composition were determined.Intermediate stable organic carbon,the microbial quotient and aggregate stability(mean weight diameter)were calculated.SOC and aggregate stability in the L.chinense plantation did not increase linearly with an increase in L.chinense age;rather,they fi rst decreased,then increased with increasing age of L.chinense.The microbial quotient had a negative eff ect on the level of organic carbon and the stability of aggregates,while chemically stable organic carbon had a positive eff ect,which explained 55.0%and 19.3%of the total variation,respectively(P<0.01).Therefore,more attention should be paid of these two indicators in the future. 展开更多
关键词 Soil organic carbon Aggregate stability Liriodendron chinense plantation CHRONOSEQUENCE Soil depth
下载PDF
Effects of organic mulching on soil aggregate stability and aggregate binding agents in an urban forest in Beijing, China 被引量:2
10
作者 Wei Zhou Xiangyang Sun +3 位作者 Suyan Li Tiantian Du Yi Zheng Zhihui Fan 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第3期1083-1094,共12页
Urban forest soil is often disturbed by rapid urbanization. Organic mulching is effective for improving soil quality and aggregate stability. This study evaluated how soil binding agents changed aggregate stability th... Urban forest soil is often disturbed by rapid urbanization. Organic mulching is effective for improving soil quality and aggregate stability. This study evaluated how soil binding agents changed aggregate stability through organic mulching in urban forest soils. Three treatments were applied in Jiufeng National Forest Park, Beijing: (1) no organic mulch (control);(2) wood chips alone (5 cm thickness);and, (3) wood chips + wood compost (This mulch was divided into two layers, the upper layer of wood chips (2.5 cm), the lower layer wood compost (2.5 cm)). Soil samples were collected from the surface 10- cm soil layer and fraction into four aggregates. Glomalin-related soil protein and soil organic carbon were measured in bulk soil and the four aggregates. The results show that wood chips + wood compost increased the proportion of large and small macroaggregates, mean weight diameter and geometric mean diameter. The total and easily extractable glomalin-related soil protein were higher in the wood chips + wood compost. However, soil organic carbon was lower in the wood chips alone application compared to the controls and wood chips + wood compost. Easily extractable / total glomalin-related soil protein and glomalin-related soil protein / soil organic carbon ratios of wood chips alone and wood chips + wood compost had increased trend compared to the controls but did not reach significant levels (p > 0.05). Mean weight diameter and geometric mean diameter correlated positively with total and easily extractable glomalin-related soil protein but were not positively correlated with soil organic carbon, the ratios of easily extractable and total glomalin-related soil protein, and the ratios of glomalin-related soil protein and soil organic carbon. Redundancy analysis revealed that total glomalin-related soil protein was the most important driver for soil aggregate stability, especially the total glomalin-related soil protein of small macroaggregates. The results suggest that wood chips + wood compost enhanced soil aggregate stability through the increase of glomalin-related soil protein. Wood chips alone cannot enhance soil aggregate stability in urban forests in the short term. 展开更多
关键词 Organic mulching Soil aggregate stability Soil binding agents Glomalin-related soil protein(GRSP) Soil organic carbon(SOC)
下载PDF
Contents of soil organic carbon and nitrogen in water-stable aggregates in abandoned agricultural lands in an arid ecosystem of Northwest China 被引量:6
11
作者 WANG Junqiang LIU Lichao +3 位作者 QIU Xiaoqing WEI Yujie LI Yanrong SHI Zhiguo 《Journal of Arid Land》 SCIE CSCD 2016年第3期350-363,共14页
Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an... Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term. 展开更多
关键词 aggregate stability water-stable aggregates agricultural abandonment soil organic carbon total nitrogen northwestern China
下载PDF
Effects of soil organic matter components and iron aluminum oxides on aggregate stability during vegetation succession in granite red soil eroded areas
12
作者 LIN Zhe HUANG Zhi-gang +3 位作者 LIAO Da-lan HUANG Wan-xia HUANG Juan DENG Yu-song 《Journal of Mountain Science》 SCIE CSCD 2022年第9期2634-2650,共17页
Soil aggregates determine the basic structure of soil,and their composition and stability are influenced by the various types of cementitious substances occurring in soil.To explore the main limiting factors of soil a... Soil aggregates determine the basic structure of soil,and their composition and stability are influenced by the various types of cementitious substances occurring in soil.To explore the main limiting factors of soil aggregation in the process of vegetation succession with granite as the parent material,five stages of vegetation succession in an eroded area were selected:bare land(BL),grassland(GL),grassland shrub transition land(GS),shrubland(SL)and secondary forest(SF).Soil samples were collected to determine the composition and stability of aggregates.The contents of organic and inorganic cementitious substances,including organic matter components and iron aluminum oxides,were determined at five soil aggregate grain levels.The results indicated that the stability of soil aggregates and the>0.25 mm water-stable aggregate content(WR_(0.25))increased with vegetation succession.Based on the Le Bissonnais(LB)method,the mean weight diameter(MWD)of soil aggregates increased,and the relative dissipation index(RSI)and relative mechanical crushing index(RMI)decreased.The humic acid(HA)and fulvic acid(FA)contents in soil aggregates increased with vegetation succession,and the soil humus content at the SF stage increased by more than 13.54%over the BL level.Upon different vegetation succession stage,the iron and aluminum oxides for the SL and the SF were at a high level,and the contents of free-form iron oxide(Fe_(d))and amorphous iron oxide(Fe_(o))for BL were high.Correlation analysis indicated that the soil humic degree(PQ)and the contents of amorphous alumina(Al_(o))were positively correlated with aggregate stability to varying degrees.Redundancy analysis(RDA)revealed that PQ values of 1-2 mm(PQ_(2))and 0.25-0.5 mm(PQ_(4))aggregates,the contents of Fe_(o) of bulk soil(Fe_(oB)),>2 mm(Fe_(o1)),1-2 mm(Fe_(o2)),and<0.25 mm(Fe_(o5))aggregates,and the contents of Al_(o) of>2 mm(Al_(o1))aggregates could explain 99.4%of the changes in soil aggregate stability at different vegetation succession stages.Al_(o1) had a contribution rate of 71.2%and is the key factor for improving the stability of soil aggregates. 展开更多
关键词 Soil aggregate stability Vegetation succession Soil organic matter components Iron aluminum oxides
下载PDF
Cover Crop Effects on Near-Surface Soil Aggregate Stability in the Southern Mississippi Valley Loess (MLRA 134)
13
作者 Chandler Arel Kristofor R. Brye +1 位作者 Matt Fryer Mike Daniels 《Agricultural Sciences》 2022年第6期741-757,共17页
The use of cover crops (CC) during the agricultural fallow period has been shown to help alleviate soil compaction and provide stabilizing effects against soil erosion. These benefits are particularly important as man... The use of cover crops (CC) during the agricultural fallow period has been shown to help alleviate soil compaction and provide stabilizing effects against soil erosion. These benefits are particularly important as many of the silty, loess-derived soils of the major land resource area (MLRA) 134, the Southern Mississippi Valley Loess, have large erosion potentials. This study evaluated the effects of CC and no-cover crop (NCC) treatments on a selection of silt-loam soils in MLRA 134. Treatments were implemented during Fall 2018 and Fall 2019 and consisted of a range of CC species. Soil samples from the top 10 cm were collected to evaluate a suite of soil properties. Soil texture, pH, soil organic matter, and Mehlich-3 extractable Mg, Na, and Ca were unaffected (P > 0.05) by CC treatment. Total water-stable aggregate concentration was unaffected (P > 0.05) by CC treatment and soil depth (i.e., 0 - 5 and 5 - 10 cm). Soil bulk density was greater (P &#8226;cm<sup>&#8722;3</sup>) than under CC treatment (1.24 g&#8226;cm<sup>&#8722;3</sup>). Water-stable aggregate concentration was unaffected (P > 0.05) by CC treatment and soil depth, but was 21.5 times greater (P &#8226;g<sup>&#8722;1</sup>) than in the > 4-mm (0.05 g&#8226;g<sup>&#8722;1</sup>) size class. Study results indicate that, even among sites with large variability, CC can have consistent, short-term, positive effects on soil properties, but a long-term commitment to continuous, annual cover crops is necessary for the full realization of potential benefits. 展开更多
关键词 Soil Erosion Cover Crops Soil Properties Soil Aggregate stability
下载PDF
The Effect of Some Soil Physical and Chemical Properties on Soil Aggregate Stability in Different Locations in Sulaimani and Halabja Governorate
14
作者 Salahaddin Abdulqadir Aziz Saman Mahmood Karim 《Open Journal of Soil Science》 2016年第4期81-88,共8页
Some soil properties were studied in relation soil aggregate along a climatologically region and different crop land use in the Northeast of Sulaimani City/Kurdistan Region of Iraq. Five locations were selected along ... Some soil properties were studied in relation soil aggregate along a climatologically region and different crop land use in the Northeast of Sulaimani City/Kurdistan Region of Iraq. Five locations were selected along these regions ranging from semiarid to sub-humid climatologically conditions. The soil physical, chemical properties, aggregate stability and size distribution were analyzed. A mean-weight-diameter (MWD) value was determined on 5 soils, which was the sum of the percentage of soil on each sieve (6, 3, 1.5, 0.75, 0.375 and 0.125 mm). The results of the measurements could evaluated with linear correlation coefficients for the relationships between aggregate stability (MWD) and soil physical and chemical properties of the different crop land use. The correlation coefficient for the relationship between aggregate stability and organic matter was highly significant (P < 0.0l%) which is in agreement with the findings of [1]. Generally large aggregates (large 6, 3, 3 - 1.5 mm) were present in highest proportions in the most semiarid of the studied areas. Aggregates 0.75 - 0.125 mm were positively correlated to fine, very fine sand and silt fractions and to organic matter. Stability of aggregates showed a positive correlation with clay content and organic matter content, while the carbonate content was strongly correlated with aggregate stability. The land use history affecting soil overlaps the pattern of climatological situations and cultivated crop lands and has to be taken into account. Aggregate size distribution and stability can be used as indicator of soil conservation and productivity. 展开更多
关键词 Aggregate stability Organic Matter Some Physical and Chemical Properties Soil Consistency Limits
下载PDF
Phosphorus Fertilizer Effects on Near-Surface Soil Aggregation in Furrow-Irrigated Rice on a Silt-Loam Soil
15
作者 Jonathan B. Brye Diego Della Lunga +2 位作者 Kristofor R. Brye Chandler Arel Shane Ylagan 《Agricultural Sciences》 2023年第6期819-842,共24页
Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-su... Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-surface soil aggregate stability is fertilizer application. Rapid dissolution of fertilizers, which are mostly salts, can potentially disperse clays and destabilize aggregates. The objective of this study was to evaluate the potential effect of various fertilizer-phosphorus (P) and -nitrogen (N) sources [i.e., triple superphosphate (TSP), monoammonium phosphate (MAP), chemically precipitated struvite (CPST), electrochemically precipitated struvite (ECST), environmentally smart nitrogen (ESN)] and soil depth on water-stable aggregates (WSA) in furrow-irrigated rice on a silt-loam soil (Typic Albaqualf). Total WSA (TWSA) concentration was unaffected (P > 0.05) by fertilizer treatment or soil depth, while WSA concentration was numerically largest (P ∙g<sup>-1</sup>), which did not differ from CPST, ECST, and ESN in the 0 - 5 cm depth or the unamended control in the 0 - 5 and 5 - 10 cm depths, and was at least 1.7 times larger than ESN in the 5 - 10 cm depth (0.03 g∙g<sup>-1</sup>). Results indicated that WSA concentration among non-struvite fertilizer-P sources was generally similar to that from the struvite fertilizer materials. Principal component analysis determined that 32% of the variation of TWSA was mainly explained by changes in soil bulk density, pH, and electrical conductivity. Long-term, continual annual application of fertilizer-P and N could negatively impact soil aggregate stability, soil structure, and potentially erosion. 展开更多
关键词 ARKANSAS Rice Production Salt Index Soil Aggregate stability Soil Structure STRUVITE
下载PDF
Cultivation effects on soil texture and fertility in an arid desert region of northwestern China 被引量:4
16
作者 HE Mingzhu JI Xibin +1 位作者 BU Dongsheng ZHI Jinhu 《Journal of Arid Land》 SCIE CSCD 2020年第4期701-715,共15页
In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural produ... In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural production. Improvement in soil texture and fertility is crucial to high soil quality and stable crop yield. However, knowledge on the long-term effects of the conversion of desert lands into arable croplands is very limited. To address this problem, we conducted this study in an arid desert region of northwestern China to understand the changes in soil physical-chemical properties after 0, 2, 5, 10, 17, and 24 years of cultivation. Our results showed that silt and clay contents at the 17-year-old sites increased 17.5 and 152.3 folds, respectively, compared with that at the 0-year-old sites. The soil aggregate size fraction and its stability exhibited an exponential growth trend with increasing cultivation ages, but no significant change was found for the proportion of soil macroaggregates(>5.00 mm) during the 17 years of cultivation. The soil organic carbon(SOC) content at the 24-year-old sites was 6.86 g/kg and increased 8.8 folds compared with that at the 0-year-old sites. The total(or available) nitrogen, phosphorus, and potassium contents showed significant increasing trends and reached higher values after 17(or 24) years of cultivation. Changes in soil physical-chemical properties successively experienced slow, rapid, and stable development stages, but some key properties(such as soil aggregate stability and SOC) were still too low to meet the sustainable agricultural production. The results of this long-term study indicated that reasonable agricultural management, such as expanding no-tillage land area, returning straw to the fields, applying organic fertilizer, reducing chemical fertilizer application, and carrying out soil testing for formula fertilization, is urgently needed in arid desert regions. 展开更多
关键词 RECLAMATION soil physical-chemical properties soil aggregate stability mean weight diameter(MWD) water stable aggregate percentage(WSAP) principal component analysis(PCA)
下载PDF
Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil 被引量:14
17
作者 XIE Jun-yu XU Ming-gang +4 位作者 Qiangjiu Ciren YANG Yang ZHANG Shu-lan SUN Ben-hua YANG Xue-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2405-2416,共12页
This study investigated the effects of three contrasting soil management regimes and different nutrient treatments on the distribution of water-stable aggregates(〉2, 1–2, 0.5–1, 0.25–0.5, and 〈0.25 mm) and asso... This study investigated the effects of three contrasting soil management regimes and different nutrient treatments on the distribution of water-stable aggregates(〉2, 1–2, 0.5–1, 0.25–0.5, and 〈0.25 mm) and associated soil organic carbon(SOC) and total nitrogen(TN) content in loess soil. A 21-yr long-term experiment was performed, in which soil management regimes include cropland abandonment(Abandonment), bare fallow(Fallow) and wheat-fallow cropping(Cropping). Under Cropping, the following nutrient treatments were employed: control(CK, no nutrient input), nitrogen only(N), nitrogen and potassium(NK), phosphorus and potassium(PK), NP, NPK, and manure(M) plus NPK(MNPK). Results demonstrated that Abandonment significantly increased the content of soil macro-aggregates(〉0.25 mm) and mean weight diameter(MWD) at 0–10 and 10–20 cm soil horizons compared with Cropping, whereas Fallow yielded lower values of above two parameters. Abandonment increased SOC and TN contents in all aggregate sizes by 17–62% and 6–60%, respectively, at 0–10 cm soil layer compared with Cropping. Conversely, Fallow decreased SOC and TN contents in all aggregates by 7–27% and 7–25%, respectively. Nevertheless, the three soil management regimes presented similar SOC contents in all aggregates at 10–20 cm soil horizon. Only Cropping showed higher TN content in 〉0.5 mm aggregates than the two other regimes. Consequently, Abandonment enhanced the partitioning proportions of SOC and TN in 〉1 mm macro-aggregates, and Fallow promoted these proportions in micro-aggregates compared with Cropping. Under Cropping, long-term fertilization did not affect the distribution of aggregates and MWD values compared with those under CK, except for NPK treatment. Fertilizer treatments enhanced SOC and TN contents in aggregates at all tested soil depths. However, fertilization did not affect the partitioning proportions of SOC and TN contents in all aggregates compared with CK. Comprehensive results showed that different soil management regimes generated varied patterns of SOC and TN sequestration in loess soil. Abandonment enhanced soil aggregation and sequestered high amounts of SOC and TN in macro-aggregates. Long-term amendment of organic manure integrated with NPK maintained soil aggregate stability and improved SOC and TN sequestration in all aggregates in loess soil subjected to dryland farming. 展开更多
关键词 cropland abandonment bare fallow wheat-fallow water-stable aggregate aggregate stability
下载PDF
Long-term forest management after wildfire(Catalonia,NE Iberian Peninsula) 被引量:1
18
作者 Marcos Francos Xavier Ubeda Paulo Pereira 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期269-278,共10页
Studies of post-fire soil status in Mediterranean ecosystems are common;however,few have examined the effects of long-term forest management after a wildfire on physicochemical soil properties.Here,we analyzed differe... Studies of post-fire soil status in Mediterranean ecosystems are common;however,few have examined the effects of long-term forest management after a wildfire on physicochemical soil properties.Here,we analyzed differences in soil properties attributable to long-term postfire management and assessed the sustainability of these management practices in relation to the soil properties.The study area is located in Odena in the northeast region of the Iberian Peninsula consisted of the control forest(burned more than 30 years ago),low density forest(LD;burned in a wildfire in 1986 and managed in 2005)and high density forest(HD;burned in a wildfire in 1986 and no managed).For soils from each plot,we measured soil water repellency,aggregate stability,total nitrogen(TN),soil organic matter(SOM),inorganic carbon(IC),pH,electrical conductivity,extractable calcium,magnesium,sodium,potassium(K),phosphorus,aluminum(Al),manganese(Mn),iron(Fe),zinc,copper,boron,chrome,silicon and sulfur and calculated the ratios of C/N,Ca+Mg/(Na+K)^1/2,Ca/Al and Ca/Mg.Significant differences were found in TN,IC,SOM,pH,K,Al,Mn,Fe and C/N ratio(p<0.05).All soil properties were found to have largely recovered their pre-fire values.Soils were affected by the post-fire management practices implemented 20 years after the fire,as reflected in their respective physicochemical properties,so that soil properties at the control and LD sites are more similar today than those at the control and HD sites.Thus,sustainable forest management can overcome soil degradation in areas affected by wildfire in the medium-and long-term by improving soil properties. 展开更多
关键词 Soil chemical properties Aggregate stability Post-fire management Wildfire risk Vegetal density
下载PDF
Irrigation erosion of irrigated soils in the foothills of southern Kazakhstan 被引量:1
19
作者 Abdulla S SAPAROV Enadiy K МIRZAKEEV +2 位作者 Tatyana M SHARYPOVA Galymzhan A SAPAROV Jilili ABUDUWAILI 《Journal of Arid Land》 SCIE CSCD 2013年第2期166-171,共6页
Abstract: This paper presented the results from the study of irrigation erosion of irrigated lands in southern Ka- zakhstan. The main purpose of the work is the conservation of the fertility of irrigated soils, and t... Abstract: This paper presented the results from the study of irrigation erosion of irrigated lands in southern Ka- zakhstan. The main purpose of the work is the conservation of the fertility of irrigated soils, and then the soils of the upper, middle and lower sections of the slopes at the experimental site were studied. Based on field investigations, authors studied the water resistance of aggregates of gray-brown soils and light gray soils before and after irrigation and qualitative indicators of changes in physical and chemical properties of structured soils in irrigation were de- termined by conventional methods of soil research. The results indicated that the changes in the physical properties of soils by using polymeric compounds created a fundamentally new opportunity to control water erosion of soils. 展开更多
关键词 irrigation erosion furrow irrigation structure-forming polymers deformation of furrows permissible water speed aggregate water stability
下载PDF
THE AVERAGE AGGREGATE NUMBER OF ELECTROSTATICALLY STABILIZED AGGREGATE(ESAg)
20
作者 Jin Tao ZHANG Bo TU Guo Zhen JI Xi Kui JIANG Shanghai Institute of Organic Chemistry,Academia Sinica,345 Lingling Lu,Shanghai 200032Zhen He TONG Laboratory of Photochemistry,Institute of Photographic Chemistry,Academia Sinica,Beijing 100101 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第10期879-882,共4页
The average aggregate number(N)of electrostatically stabilized aggregate(ESAg)composed of oppositely-charged long-chain molecules,i.e., sodium ω-[α-(nathphyl)ethoxyl]undecanoate(FP^-)and cetyltrimethyl ammonium chlo... The average aggregate number(N)of electrostatically stabilized aggregate(ESAg)composed of oppositely-charged long-chain molecules,i.e., sodium ω-[α-(nathphyl)ethoxyl]undecanoate(FP^-)and cetyltrimethyl ammonium chloride(CTAC),in aqueous solution at 25℃ has been measured to be 11 to 16 in the CTAC-concentration range of 11×10^(-5) M to 30×10^(-5) M at a fixed FP- concentration of 1.0×10^(-5)M by the photon counting method. 展开更多
关键词 CTAC ESAg THE AVERAGE AGGREGATE NUMBER OF ELECTROSTATICALLY STABILIZED AGGREGATE FP WANG
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部