It is crucial to realize the point-of-care(POC)testing of harmful analytes,capa-ble of saving limited agricultural resources,assisting environmental remediation,ensuring food safety,and enabling early disease diagnosi...It is crucial to realize the point-of-care(POC)testing of harmful analytes,capa-ble of saving limited agricultural resources,assisting environmental remediation,ensuring food safety,and enabling early disease diagnosis.Compared with other conventional POC sensing strategies,aggregation-based analytical chemistry facil-itates the practical-oriented development of POC nanosensors by altering the aggregation status of nanoprobes through the action of multiple aggregation-induced“forces”originating from the targets.Herein,we have proceeded with a comprehensive review focusing on the aggregation-based analytical chemistry in POC nanosensors,covering aggregation-induced“forces”,aggregation-induced signal transductions,aggregation-induced POC nanosensing strategies,and their applications in biomolecular monitoring,food safety analysis,and environmental monitoring.Finally,challenges existing in practical applications have been fur-ther proposed to improve their sensing applications,and we expect our review can speed up the development of cost-effective,readily deployable,and time-efficient nanosensors through aggregation-based analytical chemistry.展开更多
基金National Key Research and Development Program of China,Grant/Award Numbers:2023YFE0103300,2021YFD1700300National Natural Science Foundation of China,Grant/Award Number:22176047+2 种基金innovative Talent Promotion Program—Science&Technology Innovation Team of Shaanxi,Grant/Award Number:2023-CX-TD-55Qinchuangyuan“Scientist+Engineer”team of Shaanxi,Grant/Award Number:2022KXJ-070Qinghai Special Project of Innovation Platform for Basic Conditions of Scientific Research of China,Grant/Award Number:2022-ZJ-Y18。
文摘It is crucial to realize the point-of-care(POC)testing of harmful analytes,capa-ble of saving limited agricultural resources,assisting environmental remediation,ensuring food safety,and enabling early disease diagnosis.Compared with other conventional POC sensing strategies,aggregation-based analytical chemistry facil-itates the practical-oriented development of POC nanosensors by altering the aggregation status of nanoprobes through the action of multiple aggregation-induced“forces”originating from the targets.Herein,we have proceeded with a comprehensive review focusing on the aggregation-based analytical chemistry in POC nanosensors,covering aggregation-induced“forces”,aggregation-induced signal transductions,aggregation-induced POC nanosensing strategies,and their applications in biomolecular monitoring,food safety analysis,and environmental monitoring.Finally,challenges existing in practical applications have been fur-ther proposed to improve their sensing applications,and we expect our review can speed up the development of cost-effective,readily deployable,and time-efficient nanosensors through aggregation-based analytical chemistry.