Based on a[2]rotaxane precursor with exchangeable pentafluorophenyl ester stoppers,a new wheelassembling approach has been successfully developed for the precise sequence control of hetero[3]rotaxanes,leading to the f...Based on a[2]rotaxane precursor with exchangeable pentafluorophenyl ester stoppers,a new wheelassembling approach has been successfully developed for the precise sequence control of hetero[3]rotaxanes,leading to the facile and efficient synthesis of both sequence isomers of hetero[3]rotaxanes.More importantly,taking advantage of the chirality retention along with the wheel-assembling process,corresponding sequence isomers of chiral AIEgenfunctionalized hetero[3]rotaxanes were further precisely synthesized.Impressively,the resultant hetero[3]rotaxanes revealed remarkable sequencedependent aggregation-induced emission(AIE)behavior and circularly polarized luminescence performance with large dissymmetry factors up to 0.012,highlighting the great power of the newly coined sequence engineering concept in developing novel AIE-active chiroptical materials.This proof-ofconcept study lays the foundation for investigation of the structure-property relationships of heterorotaxanes that can further direct the rational design and precise synthesis of sequence-defined heterorotaxanes with desirable properties for practical applications.展开更多
基金support by the National Natural Science Foundation of China(grant nos.92356307 and 22001073)the Natural Science Foundation of Shanghai(grant no.23ZR1419600)+3 种基金support by the National Natural Science Foundation of China(grant no.92056203)the Science and Technology Commission of Shanghai Municipality(grant no.21520710200)the National Key R&D Program of China(grant no.2021YFA1501600)support by the National Natural Science Foundation of China(grant no.22201077).
文摘Based on a[2]rotaxane precursor with exchangeable pentafluorophenyl ester stoppers,a new wheelassembling approach has been successfully developed for the precise sequence control of hetero[3]rotaxanes,leading to the facile and efficient synthesis of both sequence isomers of hetero[3]rotaxanes.More importantly,taking advantage of the chirality retention along with the wheel-assembling process,corresponding sequence isomers of chiral AIEgenfunctionalized hetero[3]rotaxanes were further precisely synthesized.Impressively,the resultant hetero[3]rotaxanes revealed remarkable sequencedependent aggregation-induced emission(AIE)behavior and circularly polarized luminescence performance with large dissymmetry factors up to 0.012,highlighting the great power of the newly coined sequence engineering concept in developing novel AIE-active chiroptical materials.This proof-ofconcept study lays the foundation for investigation of the structure-property relationships of heterorotaxanes that can further direct the rational design and precise synthesis of sequence-defined heterorotaxanes with desirable properties for practical applications.