Agilawood is a costly heartwood medicine obtained from Aquilaria sinensis with active ingredients mainly composed of volatile and semi-volatile substances. However, the formation time of agilawood is quite long and li...Agilawood is a costly heartwood medicine obtained from Aquilaria sinensis with active ingredients mainly composed of volatile and semi-volatile substances. However, the formation time of agilawood is quite long and little is known about its formation mechanism. Two highly active fungi obtained from natural agilawood were inoculated on A. sinensis trees to understand their interaction processes and elucidate the transformation rules of induced chemical compositions within different test periods. The results demonstrated that the fungi could successfully colonize living tissues and cells and activate the host defense system, resulting in agilawood accumulation. With increasing time, the main components of A. sinensis converted into constituents or analogs of agilawood and the host exhibited "self-injury" to prevent fungal intrusion and protect other tissues. The data presented here could provide scientific basis for producing agilawood with the two new fungi in a safe, feasible, and sustainable manner without destroying rare Aquilaria plants.展开更多
基金supported by the National Natural Science Foundation of China (31170016, 31270383)
文摘Agilawood is a costly heartwood medicine obtained from Aquilaria sinensis with active ingredients mainly composed of volatile and semi-volatile substances. However, the formation time of agilawood is quite long and little is known about its formation mechanism. Two highly active fungi obtained from natural agilawood were inoculated on A. sinensis trees to understand their interaction processes and elucidate the transformation rules of induced chemical compositions within different test periods. The results demonstrated that the fungi could successfully colonize living tissues and cells and activate the host defense system, resulting in agilawood accumulation. With increasing time, the main components of A. sinensis converted into constituents or analogs of agilawood and the host exhibited "self-injury" to prevent fungal intrusion and protect other tissues. The data presented here could provide scientific basis for producing agilawood with the two new fungi in a safe, feasible, and sustainable manner without destroying rare Aquilaria plants.