Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on...Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.展开更多
The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The...The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The results indicatethat during ball milling,micro-forging weld and work-hardening fracture result in that the average particle size of the Ag(Invar)powder increases rapidly at first,and then decreases sharply,finally tends to be constant.Compared with the Cu/Invar ones,thesinterability of the composites is greatly improved,resulting in that the pores in them are smaller in amount and size.After thethermo-mechanical treatment,the Cu/Ag(Invar)composites are nearly fully dense with the optimum phase composition and elementdistribution.More importantly,Cu and the Invar alloy in the composites distribute continuously in a three-dimensional(3D)networkstructure.Cu/Invar interface diffusion is effectively inhibited by the Ag barrier layer,leading to a great improvement of themechanical and thermal properties of the Cu/Ag(Invar)composites.展开更多
[AIN/FePt]10, [AIN/FePt]10/Ag and Ag/[AIN/FePt]10 thin films were deposited by magnetron sputtering onto 7059 glass substrates, then were annealed at 550℃ for 30 min. It is found that introducing non-magnetic Ag unde...[AIN/FePt]10, [AIN/FePt]10/Ag and Ag/[AIN/FePt]10 thin films were deposited by magnetron sputtering onto 7059 glass substrates, then were annealed at 550℃ for 30 min. It is found that introducing non-magnetic Ag underlayer can improve the ordering and (001) preferred orientation of FePt grains. Furthermore, the (001) texture of FePt grains increases with increasing Ag underlayer thickness. However, with Ag top layer given, it can only be observed that the ordering of FePt grains was promoted.展开更多
Cobalt ferrite CoxNi1-xFe2O4 (x = 0, 0.5, 1 ) particles with controllable magnetic properties have been prepared by calcination of co-substituted NiFe^2+Fe^3+ -layered double hydroxide (NiFe^2+Fe^3+-LDH) precu...Cobalt ferrite CoxNi1-xFe2O4 (x = 0, 0.5, 1 ) particles with controllable magnetic properties have been prepared by calcination of co-substituted NiFe^2+Fe^3+ -layered double hydroxide (NiFe^2+Fe^3+-LDH) precursors prepared via a scalable method involving separate nucleation and aging steps (SNAS). Their structural and magnetic characteristics were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). Measurements of magnetic properties show that the saturation magnetization (Ms) and coercivity (He) of the calcined products increased with increasing cobalt content. The LDH precursor-based product obtained by calcination of a mixture of CoFe^2+Fe3^+-LDH and NiFe^2+Fe^3+ -LDH powders with a Co/Ni molar ratio of 1:1, exhibits a moderate value of Ms and an increased value of He compared to the corresponding values for an Ni0.5Co0.5Fe2O4 material prepared by calcination of a Co0.5Ni0.5Fe^2+Fe^3+-LDH precursor, and a physical mixture of CoFe2O4 and NiFe2O4 with a Co/Ni molar ratio of 1 : 1. These results may provide a way to regulate magnetic anisotropy of ferrite spinels by varying the composition of the LDH precursors.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11374058
文摘Current-voltage electrical characteristics of Er silicide/Si(001) nanocontacts are measured in situ in a scanning tunneling microscopy system. Introduced as a new technique to suppress surface leakage conduction on Si(001),a silver wetting layer is evaporated onto the substrate surface kept at room temperature with Er Si2 nanoislands already existing. The effects of the silver layer on the current-voltage characteristics of nanocontacts are discussed.Our experimental results reveal that the silver layer at coverage of 0.4–0.7 monolayer can suppress effectively the current contribution from the surface conduction path. After the surface leakage path of nanocontacts is obstructed, the ideality factor and the Schottky barrier height are determined using the thermionic emission theory, about 2 and 0.5 eV, respectively. The approach adopted here could shed light on the intrinsic transport properties of metal-semiconductor nanocontacts.
文摘The behavior of chloride adsorbed on Ag(100) electrode has been studied using chronoamperometric technique, and the structural transition of chloride layer has been confirmed.
基金Project(2014DFA50860) supported by the International Science&Technology Cooperation Program of China
文摘The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The results indicatethat during ball milling,micro-forging weld and work-hardening fracture result in that the average particle size of the Ag(Invar)powder increases rapidly at first,and then decreases sharply,finally tends to be constant.Compared with the Cu/Invar ones,thesinterability of the composites is greatly improved,resulting in that the pores in them are smaller in amount and size.After thethermo-mechanical treatment,the Cu/Ag(Invar)composites are nearly fully dense with the optimum phase composition and elementdistribution.More importantly,Cu and the Invar alloy in the composites distribute continuously in a three-dimensional(3D)networkstructure.Cu/Invar interface diffusion is effectively inhibited by the Ag barrier layer,leading to a great improvement of themechanical and thermal properties of the Cu/Ag(Invar)composites.
基金supported by the Institute of Materials Chemistry, Shanxi Normal University, China
文摘[AIN/FePt]10, [AIN/FePt]10/Ag and Ag/[AIN/FePt]10 thin films were deposited by magnetron sputtering onto 7059 glass substrates, then were annealed at 550℃ for 30 min. It is found that introducing non-magnetic Ag underlayer can improve the ordering and (001) preferred orientation of FePt grains. Furthermore, the (001) texture of FePt grains increases with increasing Ag underlayer thickness. However, with Ag top layer given, it can only be observed that the ordering of FePt grains was promoted.
基金supported by the National Natural Science Foundation of China, the 111 Project (B07004)the Program for New Century Excellent Talents in Universities, the Beijing Nova Program (2007B021)the Natural Science Foundation for Young Teachers of Beijing University of Chemical Technology
文摘Cobalt ferrite CoxNi1-xFe2O4 (x = 0, 0.5, 1 ) particles with controllable magnetic properties have been prepared by calcination of co-substituted NiFe^2+Fe^3+ -layered double hydroxide (NiFe^2+Fe^3+-LDH) precursors prepared via a scalable method involving separate nucleation and aging steps (SNAS). Their structural and magnetic characteristics were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). Measurements of magnetic properties show that the saturation magnetization (Ms) and coercivity (He) of the calcined products increased with increasing cobalt content. The LDH precursor-based product obtained by calcination of a mixture of CoFe^2+Fe3^+-LDH and NiFe^2+Fe^3+ -LDH powders with a Co/Ni molar ratio of 1:1, exhibits a moderate value of Ms and an increased value of He compared to the corresponding values for an Ni0.5Co0.5Fe2O4 material prepared by calcination of a Co0.5Ni0.5Fe^2+Fe^3+-LDH precursor, and a physical mixture of CoFe2O4 and NiFe2O4 with a Co/Ni molar ratio of 1 : 1. These results may provide a way to regulate magnetic anisotropy of ferrite spinels by varying the composition of the LDH precursors.