The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties...The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.展开更多
Based on the available experimental phase equilibrium relations and aging precipitation sequences,the Mg–Gd–Y ternary system has been thermodynamically re-assessed by means of CALPHAD technique.To simulate the exper...Based on the available experimental phase equilibrium relations and aging precipitation sequences,the Mg–Gd–Y ternary system has been thermodynamically re-assessed by means of CALPHAD technique.To simulate the experimentally reported aging precipitation sequence,α(Mg)_(SS)(supersaturated)→GP zones(D019-type,metastable)→β’-Mg_(7)Gd(c-bco,metastable)→β_(1)-Mg_(3)Gd(fcc,metastable)→β-Mg_(5)Gd(fcc,stable)near the Mg–Gd side,andα(Mg)SS(supersaturated)→β’-Mg_(7)Y(c-bco,metastable)→β-Mg_(24)Y_(5)(bcc,stable)near the Mg–Y side,the effective nucleation driving forces obtained by deducting the nucleation resistances from the thermodynamic driving forces are calculated and analyzed.Two metastable components,GP zones(D019-type)andβ’(c-bco)ordered fromα(Mg)_(SS),do not exist in the stable equilibrium phase diagram but appear in the annealing process of typical alloys.The Redlich–Kister equations are adopted to describe three solution phases,Liquid,HCP_A3 and BCC_A2.The intermediate compounds Mg_(2)Y,Mg_(24)Y_(5),Mg_(2)Gd,Mg_(3)Gd and Mg_(5)Gd are expressed by the formulas of(Mg,Y)_(2/3)(Gd,Mg,Y)_(1/3),Mg_(24/29)(Gd,Mg,Y)_(4/29)Y1/29,(Gd,Mg)_(2/3)(Gd,Mg,Y)_(1/3),(Gd,Mg)_(3/4)(Gd,Mg,Y)_(1/4)and Mg_(5/6)(Gd,Mg,Y)_(1/6),respectively.In particular,the two-sublattice models(Gd,Mg,Y)_(1/2)(Gd,Mg,Y)_(1/2),(Gd,Mg,Y)_(3/4)(Gd,Mg,Y)_(1/4)and(Gd,Mg,Y)_(7/8)(Gd,Mg,Y)_(1/8)have been respectively used to describe the stable Mg(Gd,Y)(BCC_B2)alloy compound as well as the metastable GP zones(D019-type)andβ’(c-bco)phase,in order to cope with the order-disorder transitions.A set of self-consistent thermodynamic parameters has been obtained to ensure the thermodynamic calculations well consistent with the reported experimental data,containing not only the stable equilibrium phase diagram but also the aging precipitation sequence.展开更多
Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transm...Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transmission electron microscope(TEM)observations.Creep aging results show that the steady-state creep mechanism of RRAed alloys is mainly dislocation climb(stress exponent≈5.8),which is insensitive to the grain interior and boundary precipitates.However,the total creep deformation increases over the re-aging time.In addition,the yield strength and tensile strength of the four RRAed samples are essentially the same after creep aging at 140℃ for 16 h,but the elongation decreases slightly with the re-aging time.What’s more,the retrogression and re-aging treatment are beneficial to increase the hardness and electrical conductivity of the creep-aged 7150 aluminum alloy.It can be concluded that the retrogression and re-aging treatment before creep aging forming process can improve the microstructure within grain and at grain boundary,forming efficiency and comprehensive performance of mechanical properties and electrical conductivity of 7150 aluminum alloy.展开更多
The interaction between precipitation and recrystallization and its effect on t he properties of the Cu-Ni-Si-Cr alloy during aging were discussed.The result s show that the deformation results in much more dispersed...The interaction between precipitation and recrystallization and its effect on t he properties of the Cu-Ni-Si-Cr alloy during aging were discussed.The result s show that the deformation results in much more dispersed precipitation of the phases. The precipitations have accelerating or retarding effects on the recryst allization. On the formation and growth of recrystallization, the precipitated p hases are coarsed or dissolved in front of grain boundaries following a re-prec ipitation in the recrystallization area.展开更多
In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanis...In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as AI4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃).展开更多
The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electr...The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electrical conductivity and the volume fraction of the precipitates, the phase transformation kinetics equation was deduced from the Avrami empiricai formula. On the basis of this equation, transformation kinetics curves corresponding to 5% and 50% transformation were established.展开更多
The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) h...The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) high nitrogen austenitic stainless steels was investigated. The results show that the "nose" temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 ℃, 60 s; 850 ℃, 45 s; 850 ℃, 60 s and 900 ℃, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The Z phase corresponding to a composition of Fe36Cr^2Mo10, is determined to be a body-centered cubic structure ofa=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.展开更多
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr...The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.展开更多
The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 ...The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 Zr alloys. In Al-3.95Cu-0.52Mn-0.11 Zr alloy, when the pre-aging temperature is 25 °C, the pre-aging treatment has no evident effect on the peak hardness of subsequent artificial aging, while a positive effect(increase of peak hardness) appears when pre-aging temperature is50 °C. However, in Al-3.95Cu-1.32Mg-0.52Mn-0.11 Zr alloy, it is found that whether the pre-aging temperature is 25 °C or 50 °C,the peak artificial aging hardness is lower than that of T6 treated alloy, that is to say, pre-aging treatment has a negative effect on the peak hardness of subsequent artificial aging in the alloys.展开更多
The mechanical properties (σb,σ0.2,and δ) and fracture behavior of tensile specimens of the refined A356 alloys were investigated as a function of the addition level of Al-Ti-B master alloy under both as-cast and T...The mechanical properties (σb,σ0.2,and δ) and fracture behavior of tensile specimens of the refined A356 alloys were investigated as a function of the addition level of Al-Ti-B master alloy under both as-cast and T6 heat-treated conditions. The results show that as the addition level of Al-5Ti-1B master alloy increases from 0.1 wt.% to 5.0 wt.%,the mechanical properties of refined A356 alloys improve steadily and then decrease slightly under both as-cast and T6 heat-treated conditions. Also,they display exc...展开更多
The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyze...The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening.展开更多
The precipitation of S'phase in an 8090 Al-Li alloy under various aging conditions was investigated by transmission electron microscopy.The results show that a small quantity of S'precipitates precipitated on ...The precipitation of S'phase in an 8090 Al-Li alloy under various aging conditions was investigated by transmission electron microscopy.The results show that a small quantity of S'precipitates precipitated on the grain and subgrain boundaries for the specimens aged to peak hardness during single aging.Cold working prior to aging promoted the widespread precipitation of S'phase because of increasing dislocation density.In natural aging the vacancies bound by Li atoms were released and formed dislocation loops.S'precipitates preferentially nucleated and grew on the dislocation loops.展开更多
The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM...The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the ST condition of 18Cr-16Mn-2Mo-1.1N HNS with wN above 1% is identified as 1100 ℃ for 90 min, followed by water quenching to make sure the secondary phases completely dissolve into austenitic matrix and prevent the grains coarsening too much. Initial time-temperature-precipitation (TTP) curve of aged 18Cr-16Mn-2Mo-1.1N HNS which starts with precipitation of 0.05% in volume fraction is defined and the 'nose' temperature of precipitation is found to be 850 ℃ with an incubation period of 1 min. Hexagonal intergranular and cellular Cr2N with a=0.478 nm and c=0.444 nm precipitates gradually increase in the isothermal aging treatment. The matrix nitrogen depletion due to the intergranular and a few cellular Cr2N precipitates induces the decay of Vickers hardness, and the increment of cellular Cr2N causes the increase in the values. Impact toughness presents a monotonic decrease and SEM morphologies show the leading brittle intergranular fracture. The ultimate tensile strength (UTS), yield strength (YS) and elongation (El) deteriorate obviously. Stress concentration occurs when the matrix dislocations pile up at the interfaces of precipitation and matrix, and the interfacial dislocations may become precursors to the misfit dislocations, which can form small cleavage facets and accelerate the formation of cracks.展开更多
Cerium-zirconium composite oxides with high performance were synthesized by a co-precipitation method, using zirconium oxychloride and rare earth chloride as raw materials. The effects of precipitate aging time on the...Cerium-zirconium composite oxides with high performance were synthesized by a co-precipitation method, using zirconium oxychloride and rare earth chloride as raw materials. The effects of precipitate aging time on the properties of cerium-zirconium composite oxides were investigated. The prepared cerium-zirconium composite oxides were characterized by X-ray diffraction(XRD), BET specific surface area, pulsed oxygen chemical adsorption, H2 temperature-programmed-reduction(H2-TPR), scanning electron microscopy(SEM), etc. The results showed that the precipitate aging time caused great effects on the properties of cerium zirconium composite oxides. With the increase of aging time, the cerium zirconium composite oxides showed enhanced specific surface area, good thermal stability, and high oxygen storage capacity(OSC). The best performance sample was obtained while the precipitate aging time up to 48 h, with the specific surface area of 140.7 m2/g, and OSC of 657.24 μmolO2/g for the fresh sample. Even after thermal aged under 1000 oC for 4 h, the aged specific surface area was 41.6 m2/g, moreover with a good OSC of 569.9 μmolO2/g.展开更多
To study the influence of aging heat treatments on the microstructure of single crystal superalloys with high content of refractory elements and optimal the aging heat treatment regimes, a single crystal superalloy co...To study the influence of aging heat treatments on the microstructure of single crystal superalloys with high content of refractory elements and optimal the aging heat treatment regimes, a single crystal superalloy containing 22 wt% refractory elements was investigated.Results show that for the experimental alloy, even the homogenization-solution heat treatment for 25 h cannot homogenize the alloying elements completely. During primary aging heat treatment, γ' phase grows larger and turns to regular cubes. Higher aging temperature induces larger γ' cubes. For specimens with primary aging heat treated at 1120 ℃,γ' morphology does not change apparently during secondary aging heat treatment. For specimens with primary aging heat treatment at 1150 ℃,γ'phase in interdendrite grows obviously comparing with that in dendrites. By analyzing the precipitating kinetics of γ'phase, it is found that owning to the dendrite segregation and different aging heat treatment temperatures, γ' phase at different regions grows under the control of different factors at different aging heat treatment stages. The two controlling factors that are driving forces of phase transformation and element diffusion rate induce obviously different growth rates of γ' phase. As a result, the γ'-precipitating behaviors are variable based on different solute concentrations and aging temperatures. For advanced single crystal superalloys that are supposed to be used at relatively high temperatures, the final γ' size after aging heat treatment is suggested to be close to the crossing point of diffusion controlling curve and driving force controlling curve corresponding to the serving temperature. And then,high-temperature properties can be improved.展开更多
In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) ...In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) were aged at 320 ℃for different time,respectively.The mechanical properties,electrical conductivity and microstructure of the alloy aged for different time were analyzed.Additionally,the precipitation kinetics of Cu-1.9Be-0.3Ni-0.15Co alloys was investigated.X-ray diffraction and transmission electron microscopy results reveal that both continuous precipitation and discontinuous precipitation existed in the hard-state Cu-l.9Be-0.3Ni-0.15Co alloy during the whole aging process;the sequence of continuous precipitation is G.P.zone →γ″→γ′→γ.Furthermore,the precipitation transformation mechanism of softstate alloy is homogeneous nucleation,while hard-state alloy shows the heterogeneous nucleation(interface nucleation)with the nucleation rate of both states decaying rapidly to zero during aging at 320 ℃.展开更多
The shape memory behavior of [111]-oriented Ni_(51)Ti_(49) (at.%) single crystals was investigated after stressassisted aging at 500 °C for 1.5 h under a compressive stress of-150 MPa.It was found that a si...The shape memory behavior of [111]-oriented Ni_(51)Ti_(49) (at.%) single crystals was investigated after stressassisted aging at 500 °C for 1.5 h under a compressive stress of-150 MPa.It was found that a single family of Ni_4Ti_3 precipitates with two crystallographically equivalent variants was formed after aging under compressive stress.Stressassisted aging resulted in tensile two-way shape memory effect strain of 1.56% under-5 MPa.Thermal cycling under-600 MPa resulted in a transformation strain of-2.15%,while the subsequent thermal cycling under-5 MPa resulted in a tensile two-way shape memory effect strain of 2.2%.展开更多
To investigate the effect of high temperature ageing on the microstructure and mechanical properties of S31042steel,solid solution treatment at 700℃ was carried out for various time from 10to 6 000h.Experimental resu...To investigate the effect of high temperature ageing on the microstructure and mechanical properties of S31042steel,solid solution treatment at 700℃ was carried out for various time from 10to 6 000h.Experimental results showed that the change of mechanical properties is closely related to the amount of precipitated phases.During ageing from 10to 300h,precipitation in the tested steel increases rapidly,and correspondingly,the high temperature yield strength and room temperature hardness of tested steel increase rapidly.Meanwhile,the thickness of the secondary phase on grain boundaries widens sharply and the room temperature Charpy impact absorb energy decreases.Ageing beyond 300h,the precipitation in the steel increases gradually and the precipitates coarsen to a certain extent.The high temperature yield strength of the steel keeps stable,and the room temperature Charpy impact energy and hardness decrease slowly.Ageing beyond 3 000h,the mechanical properties of the steel tend to be stable.The main precipitates are M23C6,NbCrN and NbC in the tested steel.展开更多
This study demonstrates that the precipitation behavior of 13-Mg17Al12 phase during aging and the resultant variation in hardness and mechanical properties of cast Mg-Al-Zn alloy are strongly dependent on initial grai...This study demonstrates that the precipitation behavior of 13-Mg17Al12 phase during aging and the resultant variation in hardness and mechanical properties of cast Mg-Al-Zn alloy are strongly dependent on initial grain size. Grain size reduction accelerates discontinuous precipitation at the early stage of aging treatment by increasing the area fraction of grain boundaries that can act as nucleation sites for discontinuous precipitates (DP), but it does not influence DP growth rate. Grain refinement also prematurely terminates continuous precipitation because the formation of a large number of DP reduces the amount of AI dissolved in the matrix, which is required for the formation of continuous precipitates (CP). This promotion of DP formation and early termination of CP formation significantly decrease the peak-aging time to one-third. The enhanced precipitation behavior also leads to an additional hardness improvement in the aged alloy, along with an increase in hardness owing to grain boundary strengthening by grain refinement. The amount of increase in hardness changes with aging time, which is determined by the variation of three variables with aging time: DP fraction difference between refined and nonrefined alloys, hardness difference between DP and matrix, and matrix hardness difference between the two alloys. Grain refinement improves both tensile strength and ductility of the homogenized alloy owing to grain boundary strengthening and suppression of twinning activation, respectively. However, the loss of ductility after peak-aging treatment is greater in the refined alloy because of the larger amount of DP acting as a crack source in this alloy.展开更多
The effect of cryorolling on the precipitation process of deformed Cu-Ni-Si alloys was investigated through in situ synchrotron X-ray diffraction technique. The results demonstrate that the precipitation process is si...The effect of cryorolling on the precipitation process of deformed Cu-Ni-Si alloys was investigated through in situ synchrotron X-ray diffraction technique. The results demonstrate that the precipitation process is significantly accelerated by cryorolling. Cryorolling produces higher dislocation density, which provides more heterogeneous nucleation sites for Ni2Si precipitates, hence promotes precipitation. In the early stage of aging, the enhanced nucleation of precipitates accelerates the depletion of supersaturation, and finer precipitates are obtained. In addition, recrystallization is promoted as a result of high stored energy in the cryorolled Cu-Ni-Si alloys, which facilitates the formation of discontinuous precipitation in the late stage of aging.展开更多
基金the Tianjin Key Laboratory of Fastening and Connection Technology Enterprises 2022—2023,China(No.TKLF2022-02-C-02)the technical support from the School of Materials Science and Engineering,Central South University,China.
文摘The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively.
基金the National Key Research and Development Program of China(No.2016YFB0701201)the National Natural Science Foundation of China(No.52071011)for the financial supports.
文摘Based on the available experimental phase equilibrium relations and aging precipitation sequences,the Mg–Gd–Y ternary system has been thermodynamically re-assessed by means of CALPHAD technique.To simulate the experimentally reported aging precipitation sequence,α(Mg)_(SS)(supersaturated)→GP zones(D019-type,metastable)→β’-Mg_(7)Gd(c-bco,metastable)→β_(1)-Mg_(3)Gd(fcc,metastable)→β-Mg_(5)Gd(fcc,stable)near the Mg–Gd side,andα(Mg)SS(supersaturated)→β’-Mg_(7)Y(c-bco,metastable)→β-Mg_(24)Y_(5)(bcc,stable)near the Mg–Y side,the effective nucleation driving forces obtained by deducting the nucleation resistances from the thermodynamic driving forces are calculated and analyzed.Two metastable components,GP zones(D019-type)andβ’(c-bco)ordered fromα(Mg)_(SS),do not exist in the stable equilibrium phase diagram but appear in the annealing process of typical alloys.The Redlich–Kister equations are adopted to describe three solution phases,Liquid,HCP_A3 and BCC_A2.The intermediate compounds Mg_(2)Y,Mg_(24)Y_(5),Mg_(2)Gd,Mg_(3)Gd and Mg_(5)Gd are expressed by the formulas of(Mg,Y)_(2/3)(Gd,Mg,Y)_(1/3),Mg_(24/29)(Gd,Mg,Y)_(4/29)Y1/29,(Gd,Mg)_(2/3)(Gd,Mg,Y)_(1/3),(Gd,Mg)_(3/4)(Gd,Mg,Y)_(1/4)and Mg_(5/6)(Gd,Mg,Y)_(1/6),respectively.In particular,the two-sublattice models(Gd,Mg,Y)_(1/2)(Gd,Mg,Y)_(1/2),(Gd,Mg,Y)_(3/4)(Gd,Mg,Y)_(1/4)and(Gd,Mg,Y)_(7/8)(Gd,Mg,Y)_(1/8)have been respectively used to describe the stable Mg(Gd,Y)(BCC_B2)alloy compound as well as the metastable GP zones(D019-type)andβ’(c-bco)phase,in order to cope with the order-disorder transitions.A set of self-consistent thermodynamic parameters has been obtained to ensure the thermodynamic calculations well consistent with the reported experimental data,containing not only the stable equilibrium phase diagram but also the aging precipitation sequence.
基金Project(2017YFB0306300)supported by the National Key Research and Development Program of ChinaProject(2017ZX04005001)supported by the National Science and Technology Major Project,China+2 种基金Project(JCKY2014203A001)supported by National Defense Program of ChinaProjects(51905551,51675538,51601060)supported by the National Natural Science Foundation of ChinaProjects(Kfkt2018-03,zzYJKT2019-11)supported by State Key Laboratory of High-Performance Complex Manufacturing,China。
文摘Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transmission electron microscope(TEM)observations.Creep aging results show that the steady-state creep mechanism of RRAed alloys is mainly dislocation climb(stress exponent≈5.8),which is insensitive to the grain interior and boundary precipitates.However,the total creep deformation increases over the re-aging time.In addition,the yield strength and tensile strength of the four RRAed samples are essentially the same after creep aging at 140℃ for 16 h,but the elongation decreases slightly with the re-aging time.What’s more,the retrogression and re-aging treatment are beneficial to increase the hardness and electrical conductivity of the creep-aged 7150 aluminum alloy.It can be concluded that the retrogression and re-aging treatment before creep aging forming process can improve the microstructure within grain and at grain boundary,forming efficiency and comprehensive performance of mechanical properties and electrical conductivity of 7150 aluminum alloy.
基金Funded by the National High Technology Research Project (No.2002AA331112) and by the Major Science and Technology Projectof Henan Province of China(No.0122021300)
文摘The interaction between precipitation and recrystallization and its effect on t he properties of the Cu-Ni-Si-Cr alloy during aging were discussed.The result s show that the deformation results in much more dispersed precipitation of the phases. The precipitations have accelerating or retarding effects on the recryst allization. On the formation and growth of recrystallization, the precipitated p hases are coarsed or dissolved in front of grain boundaries following a re-prec ipitation in the recrystallization area.
基金funded by the National Natural Science Foundation of China(51371077)
文摘In the present study, the tested hypereutectic Al-21wt.%Si alloys were prepared by modifying the melt using different proportions of P and Ce, and then applying T6 heat treatment. The modification effects and mechanism of P+Ce complex modifier on the Si phase of hypereutectic Al-21wt.%Si alloy were studied, and the aging precipitation behavior after modification was characterized by means of tensile strength measurement, OM, SEM and TEM analysis. The results show that the massive primary silicon phase particles are significantly refined after modification, while the needle-like eutectic silicon crystals become fibrous and short. It was found that the mechanism of phosphorus modification on the primary silicon can be attributed to heterogeneous nucleation of AlP, while the modification mechanism of Ce can be explained by adsorbing-twinning theory. In the aged microstructure of the modified hypereutectic Al-21wt.%Si alloy, there existed some strengthening phases such as AI4Cu9, Al2Cu, AlCu3, and Al57Mn12. The P+Ce complex modifier not only affected the size of primary silicon and eutectic silicon, but also the aging behavior of alloys under the heat treatment process. When Al-21wt.%Si alloy was modified using 0.08%wt.P + 0.6wt.% Ce, the aging precipitates were dispersed uniformly in the alloy, and its mechanical properties at room and elevated temperatures are optimized (Rm = 287.6 MPa at RT, Rm = 210 MPa at 300 ℃).
基金This work was supported by the National High Technology Research Project“863"under Grant No.2002AA331112by the Major Science&Technology Project of Henan Province,China,under Grant No.0122021300.
文摘The aging precipitation behavior in solution treated Cu-Ni-Si-Cr alloy has been studied in terms of the analyses of the variations in electrical conductivity. On the basis of the linear relationship between the electrical conductivity and the volume fraction of the precipitates, the phase transformation kinetics equation was deduced from the Avrami empiricai formula. On the basis of this equation, transformation kinetics curves corresponding to 5% and 50% transformation were established.
基金Project(51304041) supported by the National Natural Science Foundation of ChinaProject(N100402015) supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(2012AA03A502) supported by the National High Technology Research and Development Program of ChinaProject supported by Program for Liaoning Innovative Research Team in University,China
文摘The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) high nitrogen austenitic stainless steels was investigated. The results show that the "nose" temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 ℃, 60 s; 850 ℃, 45 s; 850 ℃, 60 s and 900 ℃, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The Z phase corresponding to a composition of Fe36Cr^2Mo10, is determined to be a body-centered cubic structure ofa=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.
基金supported by the Science and Technology Program of Sichuan Province,China(No.2013GZX0146)
文摘The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.
基金Project(2006AA03Z517)supported by the National High-tech Research and Development Program of ChinaProject(CSUZC2013019)supported by Open Fund for the Precision Instruments of Central South University,China
文摘The effects of pre-aging treatments on subsequent artificial aging response were investigated by means of transmission electron microscopy observations and hardness test in age hardened Al-3.95Cu-(1.32Mg)-0.52Mn-0.11 Zr alloys. In Al-3.95Cu-0.52Mn-0.11 Zr alloy, when the pre-aging temperature is 25 °C, the pre-aging treatment has no evident effect on the peak hardness of subsequent artificial aging, while a positive effect(increase of peak hardness) appears when pre-aging temperature is50 °C. However, in Al-3.95Cu-1.32Mg-0.52Mn-0.11 Zr alloy, it is found that whether the pre-aging temperature is 25 °C or 50 °C,the peak artificial aging hardness is lower than that of T6 treated alloy, that is to say, pre-aging treatment has a negative effect on the peak hardness of subsequent artificial aging in the alloys.
基金the National Natural Science Foundation of China (No. 50571081)the Aeronautical Science Foundation of China (No. 04G53042) for financial support
文摘The mechanical properties (σb,σ0.2,and δ) and fracture behavior of tensile specimens of the refined A356 alloys were investigated as a function of the addition level of Al-Ti-B master alloy under both as-cast and T6 heat-treated conditions. The results show that as the addition level of Al-5Ti-1B master alloy increases from 0.1 wt.% to 5.0 wt.%,the mechanical properties of refined A356 alloys improve steadily and then decrease slightly under both as-cast and T6 heat-treated conditions. Also,they display exc...
基金funded by National Natural Science Foundation of China(Project No.51701172)Foundation of China Railway Eryuan Engineering Group Co.Ltd.(Project No.KYY2020035(21-21))+1 种基金Natural Science Foundation of Hunan Province(Project No.2018JJ3504)China Postdoctoral Science Foundation(Project No.2018M632977).
文摘The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening.
文摘The precipitation of S'phase in an 8090 Al-Li alloy under various aging conditions was investigated by transmission electron microscopy.The results show that a small quantity of S'precipitates precipitated on the grain and subgrain boundaries for the specimens aged to peak hardness during single aging.Cold working prior to aging promoted the widespread precipitation of S'phase because of increasing dislocation density.In natural aging the vacancies bound by Li atoms were released and formed dislocation loops.S'precipitates preferentially nucleated and grew on the dislocation loops.
基金Item Sponsored by Key Program of National Science Foundation of China(50534010)Fundamental Research Funds for Central Universities of China(N100402015)
文摘The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the ST condition of 18Cr-16Mn-2Mo-1.1N HNS with wN above 1% is identified as 1100 ℃ for 90 min, followed by water quenching to make sure the secondary phases completely dissolve into austenitic matrix and prevent the grains coarsening too much. Initial time-temperature-precipitation (TTP) curve of aged 18Cr-16Mn-2Mo-1.1N HNS which starts with precipitation of 0.05% in volume fraction is defined and the 'nose' temperature of precipitation is found to be 850 ℃ with an incubation period of 1 min. Hexagonal intergranular and cellular Cr2N with a=0.478 nm and c=0.444 nm precipitates gradually increase in the isothermal aging treatment. The matrix nitrogen depletion due to the intergranular and a few cellular Cr2N precipitates induces the decay of Vickers hardness, and the increment of cellular Cr2N causes the increase in the values. Impact toughness presents a monotonic decrease and SEM morphologies show the leading brittle intergranular fracture. The ultimate tensile strength (UTS), yield strength (YS) and elongation (El) deteriorate obviously. Stress concentration occurs when the matrix dislocations pile up at the interfaces of precipitation and matrix, and the interfacial dislocations may become precursors to the misfit dislocations, which can form small cleavage facets and accelerate the formation of cracks.
基金Project supported by the Twelfth Five-Year National Science and Technology Pillar Program(2012BAE01B02)National Development and Reform Commission Fund:Development and commercialization of the rare earth based automotive catalytic converter for national V automotive emission standard
文摘Cerium-zirconium composite oxides with high performance were synthesized by a co-precipitation method, using zirconium oxychloride and rare earth chloride as raw materials. The effects of precipitate aging time on the properties of cerium-zirconium composite oxides were investigated. The prepared cerium-zirconium composite oxides were characterized by X-ray diffraction(XRD), BET specific surface area, pulsed oxygen chemical adsorption, H2 temperature-programmed-reduction(H2-TPR), scanning electron microscopy(SEM), etc. The results showed that the precipitate aging time caused great effects on the properties of cerium zirconium composite oxides. With the increase of aging time, the cerium zirconium composite oxides showed enhanced specific surface area, good thermal stability, and high oxygen storage capacity(OSC). The best performance sample was obtained while the precipitate aging time up to 48 h, with the specific surface area of 140.7 m2/g, and OSC of 657.24 μmolO2/g for the fresh sample. Even after thermal aged under 1000 oC for 4 h, the aged specific surface area was 41.6 m2/g, moreover with a good OSC of 569.9 μmolO2/g.
基金financially supported by the Foundation of Beijing Institute of Aeronautical Materials (No.KJSJ150109)
文摘To study the influence of aging heat treatments on the microstructure of single crystal superalloys with high content of refractory elements and optimal the aging heat treatment regimes, a single crystal superalloy containing 22 wt% refractory elements was investigated.Results show that for the experimental alloy, even the homogenization-solution heat treatment for 25 h cannot homogenize the alloying elements completely. During primary aging heat treatment, γ' phase grows larger and turns to regular cubes. Higher aging temperature induces larger γ' cubes. For specimens with primary aging heat treated at 1120 ℃,γ' morphology does not change apparently during secondary aging heat treatment. For specimens with primary aging heat treatment at 1150 ℃,γ'phase in interdendrite grows obviously comparing with that in dendrites. By analyzing the precipitating kinetics of γ'phase, it is found that owning to the dendrite segregation and different aging heat treatment temperatures, γ' phase at different regions grows under the control of different factors at different aging heat treatment stages. The two controlling factors that are driving forces of phase transformation and element diffusion rate induce obviously different growth rates of γ' phase. As a result, the γ'-precipitating behaviors are variable based on different solute concentrations and aging temperatures. For advanced single crystal superalloys that are supposed to be used at relatively high temperatures, the final γ' size after aging heat treatment is suggested to be close to the crossing point of diffusion controlling curve and driving force controlling curve corresponding to the serving temperature. And then,high-temperature properties can be improved.
基金supported by Materials Forming Processing Control and Simulation Laboratory in University of Science and Technology BeijingCNMC Ningxia Orient Group Co.,Ltd.
文摘In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) were aged at 320 ℃for different time,respectively.The mechanical properties,electrical conductivity and microstructure of the alloy aged for different time were analyzed.Additionally,the precipitation kinetics of Cu-1.9Be-0.3Ni-0.15Co alloys was investigated.X-ray diffraction and transmission electron microscopy results reveal that both continuous precipitation and discontinuous precipitation existed in the hard-state Cu-l.9Be-0.3Ni-0.15Co alloy during the whole aging process;the sequence of continuous precipitation is G.P.zone →γ″→γ′→γ.Furthermore,the precipitation transformation mechanism of softstate alloy is homogeneous nucleation,while hard-state alloy shows the heterogeneous nucleation(interface nucleation)with the nucleation rate of both states decaying rapidly to zero during aging at 320 ℃.
基金supported in part by the NASA Fundamental Aeronautics ProgramSupersonics Project and the NASA EPSCOR program(Grant No.NNX11AQ31A)RFBR Project(Grant No.10-03-0154-a)
文摘The shape memory behavior of [111]-oriented Ni_(51)Ti_(49) (at.%) single crystals was investigated after stressassisted aging at 500 °C for 1.5 h under a compressive stress of-150 MPa.It was found that a single family of Ni_4Ti_3 precipitates with two crystallographically equivalent variants was formed after aging under compressive stress.Stressassisted aging resulted in tensile two-way shape memory effect strain of 1.56% under-5 MPa.Thermal cycling under-600 MPa resulted in a transformation strain of-2.15%,while the subsequent thermal cycling under-5 MPa resulted in a tensile two-way shape memory effect strain of 2.2%.
基金Sponsored by National Science and Technology Support Plan of China(2007BAE51B02)
文摘To investigate the effect of high temperature ageing on the microstructure and mechanical properties of S31042steel,solid solution treatment at 700℃ was carried out for various time from 10to 6 000h.Experimental results showed that the change of mechanical properties is closely related to the amount of precipitated phases.During ageing from 10to 300h,precipitation in the tested steel increases rapidly,and correspondingly,the high temperature yield strength and room temperature hardness of tested steel increase rapidly.Meanwhile,the thickness of the secondary phase on grain boundaries widens sharply and the room temperature Charpy impact absorb energy decreases.Ageing beyond 300h,the precipitation in the steel increases gradually and the precipitates coarsen to a certain extent.The high temperature yield strength of the steel keeps stable,and the room temperature Charpy impact energy and hardness decrease slowly.Ageing beyond 3 000h,the mechanical properties of the steel tend to be stable.The main precipitates are M23C6,NbCrN and NbC in the tested steel.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP, South Korea) (No. 2016R1C1B2012140 and No. 2017R1A4A1015628)
文摘This study demonstrates that the precipitation behavior of 13-Mg17Al12 phase during aging and the resultant variation in hardness and mechanical properties of cast Mg-Al-Zn alloy are strongly dependent on initial grain size. Grain size reduction accelerates discontinuous precipitation at the early stage of aging treatment by increasing the area fraction of grain boundaries that can act as nucleation sites for discontinuous precipitates (DP), but it does not influence DP growth rate. Grain refinement also prematurely terminates continuous precipitation because the formation of a large number of DP reduces the amount of AI dissolved in the matrix, which is required for the formation of continuous precipitates (CP). This promotion of DP formation and early termination of CP formation significantly decrease the peak-aging time to one-third. The enhanced precipitation behavior also leads to an additional hardness improvement in the aged alloy, along with an increase in hardness owing to grain boundary strengthening by grain refinement. The amount of increase in hardness changes with aging time, which is determined by the variation of three variables with aging time: DP fraction difference between refined and nonrefined alloys, hardness difference between DP and matrix, and matrix hardness difference between the two alloys. Grain refinement improves both tensile strength and ductility of the homogenized alloy owing to grain boundary strengthening and suppression of twinning activation, respectively. However, the loss of ductility after peak-aging treatment is greater in the refined alloy because of the larger amount of DP acting as a crack source in this alloy.
基金the supports of National Key Research and Development Program of China(No.2017YFA0403803)the National Natural Science Foundation of China(Nos.51525401,51774065,51690163 and 51601028)the Dalian Support Plan for Innovation of High-level Talents(Top and Leading Talents,2015R013)
文摘The effect of cryorolling on the precipitation process of deformed Cu-Ni-Si alloys was investigated through in situ synchrotron X-ray diffraction technique. The results demonstrate that the precipitation process is significantly accelerated by cryorolling. Cryorolling produces higher dislocation density, which provides more heterogeneous nucleation sites for Ni2Si precipitates, hence promotes precipitation. In the early stage of aging, the enhanced nucleation of precipitates accelerates the depletion of supersaturation, and finer precipitates are obtained. In addition, recrystallization is promoted as a result of high stored energy in the cryorolled Cu-Ni-Si alloys, which facilitates the formation of discontinuous precipitation in the late stage of aging.