The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(H...The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The tensile strength and electrical conductivity of this alloy after various aging processes were tested. The results show that two kinds of crystallographic structure associated with chromium-rich phases, fcc and bcc structure, exist in the peak-aging of the alloy. The orientation relationship between bcc Cr precipitate and the matrix exhibits Nishiyama–Wasserman orientation relationship. Two kinds of Zr-rich phases(Cu4Zr and Cu5Zr)can be identified and the habit plane is parallel to {111}Cu plane during the aging. The increase in strength is ascribed to the precipitation of Cr- and Zr-rich phase.展开更多
The bcc-structured Mg-Li alloy is currently the engineering metallic material with the lowest density,but it has not been widely used due to its low strength.In this paper,alloying Zn effectively improves the strength...The bcc-structured Mg-Li alloy is currently the engineering metallic material with the lowest density,but it has not been widely used due to its low strength.In this paper,alloying Zn effectively improves the strength of the bcc-structured Mg-Li alloy.Due to the semi-coherent B2 structured nanoparticles,the compressive yield strength of the as-cast Mg-13Li-9Zn alloy reaches higher than 300 MPa.Due to the solid solution strengthening of Zn and the spinodal zone,the compressive yield strength of the as-quenched Mg-13Li-15Zn(LZ1315)alloy immediately increases to 400 MPa.In addition,the as-quenched LZ1315 alloy exhibits natural aging strengthening behavior.Due to the precipitation of B2 nanoparticles,the yield strength of the peak aged alloy is up to 495 MPa.展开更多
基金financially supported by the Special Foundation for Technology Research and Development in Research Institute of China (No. 2011DIA5k023)
文摘The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The tensile strength and electrical conductivity of this alloy after various aging processes were tested. The results show that two kinds of crystallographic structure associated with chromium-rich phases, fcc and bcc structure, exist in the peak-aging of the alloy. The orientation relationship between bcc Cr precipitate and the matrix exhibits Nishiyama–Wasserman orientation relationship. Two kinds of Zr-rich phases(Cu4Zr and Cu5Zr)can be identified and the habit plane is parallel to {111}Cu plane during the aging. The increase in strength is ascribed to the precipitation of Cr- and Zr-rich phase.
基金supported by the National Natural Science Foun-dation of China(51771060,51871068,51971071,52011530025,and U21A2049)Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)+1 种基金the Fundamental Research Funds for the Central Universities(3072020CFT1006)Zhejiang Province Key Research and Development Program(2021C01086).
文摘The bcc-structured Mg-Li alloy is currently the engineering metallic material with the lowest density,but it has not been widely used due to its low strength.In this paper,alloying Zn effectively improves the strength of the bcc-structured Mg-Li alloy.Due to the semi-coherent B2 structured nanoparticles,the compressive yield strength of the as-cast Mg-13Li-9Zn alloy reaches higher than 300 MPa.Due to the solid solution strengthening of Zn and the spinodal zone,the compressive yield strength of the as-quenched Mg-13Li-15Zn(LZ1315)alloy immediately increases to 400 MPa.In addition,the as-quenched LZ1315 alloy exhibits natural aging strengthening behavior.Due to the precipitation of B2 nanoparticles,the yield strength of the peak aged alloy is up to 495 MPa.