期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Feature deformation network with multi-range feature enhancement for agricultural machinery operation mode identification
1
作者 Weixin Zhai Zhi Xu +5 位作者 Jinming Liu Xiya Xiong Jiawen Pan Sun-Ok Chung Dionysis Bochtis Caicong Wu 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第4期265-275,共11页
Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of agricultural machinery is an important basis task for subsequent agricultural machinery trajectory resear... Utilizing the spatiotemporal features contained in extensive trajectory data for identifying operation modes of agricultural machinery is an important basis task for subsequent agricultural machinery trajectory research.In the present study,to effectively identify agricultural machinery operation mode,a feature deformation network with multi-range feature enhancement was proposed.First,a multi-range feature enhancement module was developed to fully explore the feature distribution of agricultural machinery trajectory data.Second,to further enrich the representation of trajectories,a feature deformation module was proposed that can map trajectory points to high-dimensional space to form feature maps.Then,EfficientNet-B0 was used to extract features of different scales and depths from the feature map,select features highly relevant to the results,and finally accurately predict the mode of each trajectory point.To validate the effectiveness of the proposed method,experiments were conducted to compare the results with those of other methods on a dataset of real agricultural trajectories.On the corn and wheat harvester trajectory datasets,the model achieved accuracies of 96.88%and 96.68%,as well as F1 scores of 93.54%and 94.19%,exhibiting improvements of 8.35%and 9.08%in accuracy and 20.99%and 20.04%in F1 score compared with the current state-of-the-art method. 展开更多
关键词 road-field trajectory classification efficientNet feature deformation network multi-range feature enhancement agricultural machinery operation mode recognition
原文传递
农机轨迹田路分类的局部方向中心性度量聚类算法
2
作者 罗天长笑 翟卫欣 《计算机工程与应用》 2024年第23期303-313,共11页
利用海量轨迹数据中蕴藏的时空信息分析农机的行为模式,将轨迹点分割成一系列田间路段和道路路段,并分配相应的语义标签,是后续有关农业机械轨迹研究的重要前置任务。已有基于密度的聚类算法难以有效分离弱连接簇,在聚类时易将弱连接的... 利用海量轨迹数据中蕴藏的时空信息分析农机的行为模式,将轨迹点分割成一系列田间路段和道路路段,并分配相应的语义标签,是后续有关农业机械轨迹研究的重要前置任务。已有基于密度的聚类算法难以有效分离弱连接簇,在聚类时易将弱连接的不同簇识别为同一簇。为克服上述缺陷,设计了一种面向农机轨迹田路分类的局部方向中心性度量和空间距离特征的聚类算法。该算法采用一种基于局部方向中心性度量的分簇机制,用于分离弱连接簇;为进一步提高算法的准确率,提出一种基于空间距离特征的簇边界重置策略,其根据元素点间的空间距离和邻域内其他点的数量分布情况对簇边界处的点进行重置,从而提高算法在簇边界处的识别性能。为验证所提方法的有效性,在农业农村部农机作业监测与大数据应用重点实验室提供的470条真实农机轨迹样本上展开了实验。结果表明所提方法的F1-score比已有聚类算法在田路分类中应用的SOTA方法在玉米、小麦、水稻收割机轨迹数据集上的F1-score分别平均提高了12.82、24.09、14.38个百分点。 展开更多
关键词 农机轨迹田路分类 弱连接数据 局部方向中心性度量 空间距离特征 簇边界重置 GNSS定位记录
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部