Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa...Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.展开更多
The Yellow River Basin is an important food production area and an ecological challenge for China, where environmental protection and water scarcity are the major constraints. For the upper reaches of the Yellow River...The Yellow River Basin is an important food production area and an ecological challenge for China, where environmental protection and water scarcity are the major constraints. For the upper reaches of the Yellow River Basin,optimizing the adoption of chemicals in agricultural production and integrating crops with livestock are the key strategies for protecting the eco-environment.For dryland agriculture in the middle and upper reaches, this study summarizes four aspects of efficient precipitation techniques in terms of collection,storage, conservation, and use, which have greatly improved crop yields and supported dryland crop production. Irrigated agriculture in the middle and lower reaches is the core area of China's grain production, where the area under water-saving irrigation reached 13.0 Mha in 2018, greatly improving water use. Compared with 1998, cereal production in 2018 increased by 62.2 Mt under similar total water withdrawals(49.7 billion to 51.6 billion m~3),and the annual soil erosion at the Tongguan Hydrological Observatory reduced by 584 million m~3 in 2018, achieving great success in environmental protection and efficient water use. The Chinese government has set a goal for the Yellow River Basin to become the national leader in environmental protection and efficient water use by 2035. Such a high demand requires the combined efforts of the whole community, as well as the adoption of new technologies,coordinated basin-wide development, and adequate policy support.展开更多
基金funded by 948 Program of Ministry of Agriculture, China (2006-G52)
文摘Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.
基金financially supported by the National Key R&D Program of China (2021YFD1900700)the China Agricultural Research System (CARS-3-1-31)。
文摘The Yellow River Basin is an important food production area and an ecological challenge for China, where environmental protection and water scarcity are the major constraints. For the upper reaches of the Yellow River Basin,optimizing the adoption of chemicals in agricultural production and integrating crops with livestock are the key strategies for protecting the eco-environment.For dryland agriculture in the middle and upper reaches, this study summarizes four aspects of efficient precipitation techniques in terms of collection,storage, conservation, and use, which have greatly improved crop yields and supported dryland crop production. Irrigated agriculture in the middle and lower reaches is the core area of China's grain production, where the area under water-saving irrigation reached 13.0 Mha in 2018, greatly improving water use. Compared with 1998, cereal production in 2018 increased by 62.2 Mt under similar total water withdrawals(49.7 billion to 51.6 billion m~3),and the annual soil erosion at the Tongguan Hydrological Observatory reduced by 584 million m~3 in 2018, achieving great success in environmental protection and efficient water use. The Chinese government has set a goal for the Yellow River Basin to become the national leader in environmental protection and efficient water use by 2035. Such a high demand requires the combined efforts of the whole community, as well as the adoption of new technologies,coordinated basin-wide development, and adequate policy support.