期刊文献+
共找到3,352篇文章
< 1 2 168 >
每页显示 20 50 100
Global Change in Agricultural Flash Drought over the 21st Century 被引量:1
1
作者 Emily BLACK 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期209-220,I0002-I0019,共30页
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop... Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa. 展开更多
关键词 flash drought climate change soil moisture agricultural drought CMIP
下载PDF
Instruction to Authors
2
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期F0003-F0003,共1页
Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o... Aims and Scope Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS). 展开更多
关键词 AGRICULTURAL founded AGRICULTURE
下载PDF
Journal of Integrative Agriculture(JIA)Instruction to Authors
3
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期I0001-I0001,F0003,共2页
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag... Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS). 展开更多
关键词 AGRICULTURAL JIA AGRICULTURE
下载PDF
Journal of Integrative Agriculture(JIA)Instruction to Authors
4
《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期F0003-F0003,共1页
Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association o... Aims and Scope Journal of IntegrativeAgriculture(JIA),formerly Agricuiltural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinsese Association of Agricultural Science Societies(CAAsS).The latest IF is 4.8.JIA seeks to publish those papers that are influential and will significantly advance scientific understanding in agriculture fields worldwide.JIA publishes manuscripts in the categories of Commentary,Review,Research Article,Letter and Short Communication,focusing on the core subjects:Crop Science Horticulture·Plant ProtectionAnimal Science·Veterinary Medicine·Agro-ecosystem&Environment·Food Science·Agricultural Economics and Management·Agricultural Information Science. 展开更多
关键词 AGRICULTURAL AGRICULTURE JIA
下载PDF
Journal of Integrative Agriculture Instruction to Authors
5
《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期I0001-I0001,F0003,共2页
Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Ag... Description Journal of Integrative Agriculture(JIA),formerly Agricultural Sciences in China(ASC),founded in 2002,is sponsored by Chinese Academy of Agricultural Sciences(CAAS),co-sponsored by Chinese Association of Agricultural Science Societies(CAASS).JIA is a peer-reviewed and multi-disciplinary international journal and published monthly in English.JIA Editorial Board consists of 289 well-respected scholars of agricultural scientific fields. 展开更多
关键词 AGRICULTURAL JOURNAL AGRICULTURE
下载PDF
Role of copper chelating agents: between old applications and new perspectives in neuroscience
6
作者 Rosalba Leuci Leonardo Brunetti +4 位作者 Vincenzo Tufarelli Marco Cerini Marco Paparella Nikola Puvača Luca Piemontese 《Neural Regeneration Research》 SCIE CAS 2025年第3期751-762,共12页
The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays a... The role of copper element has been an increasingly relevant topic in recent years in the fields of human and animal health, for both the study of new drugs and innovative food and feed supplements. This metal plays an important role in the central nervous system, where it is associated with glutamatergic signaling, and it is widely involved in inflammatory processes. Thus, diseases involving copper(Ⅱ) dyshomeostasis often have neurological symptoms, as exemplified by Alzheimer's and other diseases(such as Parkinson's and Wilson's diseases). Moreover, imbalanced copper ion concentrations have also been associated with diabetes and certain types of cancer, including glioma. In this paper, we propose a comprehensive overview of recent results that show the importance of these metal ions in several pathologies, mainly Alzheimer's disease, through the lens of the development and use of copper chelators as research compounds and potential therapeutics if included in multi-target hybrid drugs. Seeing how copper homeostasis is important for the well-being of animals as well as humans, we shortly describe the state of the art regarding the effects of copper and its chelators in agriculture, livestock rearing, and aquaculture, as ingredients for the formulation of feed supplements as well as to prevent the effects of pollution on animal productions. 展开更多
关键词 agriculture Alzheimer's disease CHELATORS COPPER feed supplements MULTI-TARGET
下载PDF
Irrigation and nitrogen fertiliser optimisation in protected vegetable fields of northern China:Achieving environmental and agronomic sustainability
7
作者 Bingqian Fan Yitao Zhang +8 位作者 Owen Fenton Karen Daly Jungai Li Hongyuan Wang Limei Zhai Xiaosheng Luo Qiuliang Lei Shuxia Wu Hongbin Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1022-1033,共12页
Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigati... Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigation management in different soil types is crucial to reduce future N loads from such systems.The present 4-year study examined leached N loads from lysimeter monitoring arrays set up across 18 protected vegetable system sites encompassing the dominant soil types of northern China.The treatments applied at each field site were:1) a high N and high irrigation input treatment (HNHI);2) a low N but high irrigation input treatment (LNHI) and 3) a low N with low irrigation input treatment (LNLI).Results showed that the mean annual leached total nitrogen loads from the HNHI,LNHI and LNLI treatments were 325,294 and 257 kg N ha^(–1) in the fluvo-aquic soil,114,100 and 78 kg N ha^(–1) in the cinnamon soil and 79,68 and 57 kg N ha^(–1) in the black soil,respectively.The N dissolved in irrigation water in the fluvo-aquic soil areas was 8.26-fold higher than in the cinnamon areas.A structural equation model showed that N fertiliser inputs and leaching water amounts explained 14.7 and 81.8%of the variation of leached N loads,respectively.Correspondingly,reducing irrigation water by 21.5%decreased leached N loads by 20.9%,while reducing manure N and chemical N inputs by 22 and 25%decreased leached N loads by only 9.5%. This study highlights that protected vegetable fields dominated by fluvo-aquic soil need management to curtail leached N losses in northern China. 展开更多
关键词 agriculture water quality NITRATE GROUNDWATER irrigation management
下载PDF
Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture
8
作者 Roohallah Saberi Riseh Mohadeseh Hassanisaadi +2 位作者 Masoumeh Vatankhah Rajender S.Varma Vijay Kumar Thakur 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期79-101,共23页
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this c... Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact. 展开更多
关键词 SUPRAMOLECULAR Biopolymers Sustainable agriculture NANOTECHNOLOGY
下载PDF
The Global Energy and Water Exchanges(GEWEX)Project in Central Asia:The Case for a Regional Hydroclimate Project
9
作者 Michael BRODY Maksim KULIKOV +1 位作者 Sagynbek ORUNBAEV Peter J.VAN OEVELEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期777-783,共7页
Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of... Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of the region’s economy.By its nature of intensive water use,agriculture is extremely vulnerable to climate change.Population growth and irrigation development have significantly increased the demand for water in the region.Major climate change issues include melting glaciers and a shrinking snowpack,which are the foundation of the region’s water resources,and a changing precipitation regime.Most glaciers are located in Kyrgyzstan and Tajikistan,leading to transboundary water resource issues.Summer already has extremely high temperatures.Analyses indicate that Central Asia has been warming and precipitation might be increasing.The warming is expected to increase,but its spatial and temporal distribution depends upon specific global scenarios.Projections of future precipitation show significant uncertainties in type,amount,and distribution.Regional Hydroclimate Projects(RHPs)are an approach to studying these issues.Initial steps to develop an RHP began in 2021 with a widely distributed online survey about these climate issues.It was followed up with an online workshop and then,in 2023,an in-person workshop,held in Tashkent,Uzbekistan.Priorities for the Global Energy and Water Exchanges(GEWEX)project for the region include both observations and modeling,as well as development of better and additional precipitation observations,all of which are topics for the next workshop.A well-designed RHP should lead to reductions in critical climate uncertainties in policy-relevant timeframes that can influence decisions on necessary investments in climate adaptation. 展开更多
关键词 GEWEX Central Asia climate change AGRICULTURE
下载PDF
Evolving patterns of agricultural production space in China:A network-based approach
10
作者 Shuhui Yang Zhongkai Li +2 位作者 Jianlin Zhou Yancheng Gao Xuefeng Cui 《Geography and Sustainability》 CSCD 2024年第1期121-134,共14页
The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have p... The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have predominantly centered on individual or specific crop types,using methods such as remote sensing or statistical metrological analysis.In this study,we characterize the agricultural production space(APS)by bipartite network connecting agricultural products and provinces,to reveal the relatedness between diverse agricultural products and the spatiotemporal characteristic of provincial production capabilities in China.The results show that core products are cereal,pork,melon,and pome fruit;meanwhile the milk,grape,and fiber crop show an upward trend in centrality,which is in line with diet structure changes in China over the past decades.The little changes in community components and structures of agricultural products and provinces reveal that agricultural production patterns in China are relatively stable.Additionally,identified provincial communities closely resemble China's agricultural natural zones.Furthermore,the observed growth in production capabilities in North and Northeast China implies their potential focus areas for future agricultural production.Despite the superior production capa-bilities of southern provinces,recent years have witnessed a notable decline,warranting special attentions.The findings provide a comprehensive perspective for understanding the complex relationship of agricultural prod-ucts'relatedness,production capabilities and production patterns,which serve as a reference for the agricultural spatial optimization and agricultural sustainable development. 展开更多
关键词 Agricultural system Complex network Agricultural production space Proximity matrix Production capability
下载PDF
Security Analysis in Smart Agriculture: Insights from a Cyber-Physical System Application
11
作者 Ahmed Redha Mahlous 《Computers, Materials & Continua》 SCIE EI 2024年第6期4781-4803,共23页
Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything... Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security. 展开更多
关键词 Smart agriculture cyber-physical system IOT security temperature sensor threats VULNERABILITIES
下载PDF
An agent-based model of agricultural land expansion in the mountain forest of Timor Island,Indonesia
12
作者 PUJIONO Eko SADONO Ronggo +12 位作者 IMRON Muhammad Ali SUTOMO JANUAR Hedi Indra KUSWANDI Relawan KURNIAWAN Hery HADI Etik Erna Wati SAPUTRA Muhammad Hadi HIDAYAH Izhamil HUMAIDA Nida SUKMAWATI Jalma Giring HADIYAN Yayan NUGROHO Agung Wahyu HANI Aditya 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2263-2282,共20页
The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns ... The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes. 展开更多
关键词 Agricultural land expansion Simulation Agent-based model FARMER DEFORESTATION Mountainous tropical forest
下载PDF
Improving dryland maize productivity and water efficiency with heterotrophic ammonia-oxidizing bacteria via nitrification and cytokinin activity
13
作者 Xiaoling Wang Jiawei Cao +4 位作者 Runhong Sun Wei Liu Lin Qi Peng Song Shenjiao Yang 《The Crop Journal》 SCIE CSCD 2024年第3期880-887,共8页
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter... A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture. 展开更多
关键词 Heterotrophic ammonia-oxidizing bacteria Rhizosphere soil nitrification CYTOKININ MAIZE Dryland agriculture
下载PDF
Plant aquaporins:Their roles beyond water transport
14
作者 Qi Sun Xin Liu +2 位作者 Yoshichika Kitagawa Giuseppe Calamita Xiaodong Ding 《The Crop Journal》 SCIE CSCD 2024年第3期641-655,共15页
Compared to other organisms,plants have evolved a greater number of aquaporins with diverse substrates and functions to adapt to ever-changing environmental and internal stimuli for growth and development.Although aqu... Compared to other organisms,plants have evolved a greater number of aquaporins with diverse substrates and functions to adapt to ever-changing environmental and internal stimuli for growth and development.Although aquaporins were initially identified as channels that allow water molecules to cross biological membranes,progress has been made in identifying various novel permeable substrates.Many studies have characterized the versatile physiological and biophysical functions of plant aquaporins.Here,we review the recent reports that highlight aquaporin-facilitated regulation of major physiological processes and stress tolerance throughout plant life cycles as well as the potential prospects and possibilities of applying aquaporins to improve agricultural productivity,food quality,environmental protection,and ecological conservation. 展开更多
关键词 Plant aquaporin SUBSTRATE Physiological function Agriculture and environment
下载PDF
Assessment of rehabilitation strategies for lakes affected by anthropogenic and climatic changes: A case study of the Urmia Lake, Iran
15
作者 Seyed Morteza MOUSAVI Hossein BABAZADEH +1 位作者 Mahdi SARAI-TABRIZI Amir KHOSROJERDI 《Journal of Arid Land》 SCIE CSCD 2024年第6期752-767,共16页
Over the last three decades,more than half of the world's large lakes and wetlands have experienced significant shrinkage,primarily due to climate change and extensive water consumption for agriculture and other h... Over the last three decades,more than half of the world's large lakes and wetlands have experienced significant shrinkage,primarily due to climate change and extensive water consumption for agriculture and other human needs.The desiccation of lakes leads to severe environmental,economic,and social repercussions.Urmia Lake,located in northwestern Iran and representing a vital natural ecosystem,has experienced a volume reduction of over 90.0%.Our research evaluated diverse water management strategies within the Urmia Lake basin and prospects of inter-basin water transfers.This study focused on strategies to safeguard the environmental water rights of the Urmia Lake by utilizing the modeling and simulating(MODSIM)model.The model simulated changes in the lake's water volume under various scenarios.These included diverting water from incoming rivers,cutting agricultural water use by 40.0%,releasing dam water in non-agricultural seasons,treated wastewater utilization,and inter-basin transfers.Analytical hierarchy process(AHP)was utilized to analyze the simulation results.Expert opinions with AHP analysis,acted as a multi-criteria decision-making tool to evaluate the simulation and determine the optimal water supply source priority for the Urmia Lake.Our findings underscore the critical importance of reducing agricultural water consumption as the foremost step in preserving the lake.Following this,inter-basin water transfers are suggested,with a detailed consideration of the inherent challenges and limitations faced by the source watersheds.It is imperative to conduct assessments on the impacts of these transfers on the downstream users and the potential environmental risks,advocating for a diplomatic and cooperative approach with adjacent country.This study also aims to forecast the volumes of water that can be transferred under different climatic conditions—drought,normal,and wet years—to inform strategic water management planning for the Urmia Lake.According to our projection,implementing the strategic scenarios outlined could significantly augment the lake's level and volume,potentially by 3.57×109–9.38×109 m3 over the coming 10 a and 3.57×109–10.70×109 m3 in the subsequent 15 a. 展开更多
关键词 climate change DROUGHT lake ecological level agricultural water demand inter-basin water transfer
下载PDF
Smart Farming for Sustainable Rice Production:An Insight into Application,Challenge,and Future Prospect
16
作者 Norhashila HASHIM Maimunah Mohd ALI +4 位作者 Muhammad Razif MAHADI Ahmad Fikri ABDULLAH Aimrun WAYAYOK Muhamad Saufi Mohd KASSIM Askiah JAMALUDDIN 《Rice science》 SCIE CSCD 2024年第1期47-61,共15页
Rice has a huge impact on socio-economic growth,and ensuring its sustainability and optimal utilization is vital.This review provides an insight into the role of smart farming in enhancing rice productivity.The applic... Rice has a huge impact on socio-economic growth,and ensuring its sustainability and optimal utilization is vital.This review provides an insight into the role of smart farming in enhancing rice productivity.The applications of smart farming in rice production including yield estimation,smart irrigation systems,monitoring disease and growth,and predicting rice quality and classifications are highlighted.The challenges of smart farming in sustainable rice production to enhance the understanding of researchers,policymakers,and stakeholders are discussed.Numerous efforts have been exerted to combat the issues in rice production in order to promote rice sector development.The effective implementation of smart farming in rice production has been facilitated by various technical advancements,particularly the integration of the Internet of Things and artificial intelligence.The future prospects of smart farming in transforming existing rice production practices are also elucidated.Through the utilization of smart farming,the rice industry can attain sustainable and resilient production systems that could mitigate environmental impact and safeguard food security.Thus,the rice industry holds a bright future in transforming current rice production practices into a new outlook in rice smart farming development. 展开更多
关键词 rice production smart farming food security agriculture sustainability
下载PDF
Integrating artificial intelligence and high-throughput phenotyping for crop improvement
17
作者 Mansoor Sheikh Farooq Iqra +3 位作者 Hamadani Ambreen Kumar A Pravin Manzoor Ikra Yong Suk Chung 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1787-1802,共16页
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev... Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI. 展开更多
关键词 artificial intelligence crop improvement data analysis high-throughput phenotyping machine learning precision agriculture trait selection
下载PDF
Physico-chemical properties and macrofauna of soils under various farming systems of cold arid region in Balochistan,Pakistan
18
作者 KHAN Mehmood GUL Shamim +5 位作者 KAKAR Hidayatullah PANEZAI Sanaullah KHAN Nayab ZIAD Tariq NASEEM Mahrukh SHAHEEN Umbreen 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2618-2630,共13页
Barshore is a small village in the Pishin District,Balochistan,Pakistan,with dry summers and cold rainy winters.This is an agrarian region,mostly with orchards of various fruit trees.This study investigated the physic... Barshore is a small village in the Pishin District,Balochistan,Pakistan,with dry summers and cold rainy winters.This is an agrarian region,mostly with orchards of various fruit trees.This study investigated the physico-chemical properties and macrofauna of soils under various agricultural management practices of this region.The concentrations of soil organic matter(SOM),soil organic carbon(SOC),nutrients,pH,electrical conductivity,soil texture,and the abundance and number of species of soil macrofauna of the agricultural fields were measured.Fifteen agricultural fields were sampled.Fourteen fields were orchards of apple,apricot or the mixture of apple and apricot trees and one field was a cropland,cultivated with wheat as a monocrop.The orchards were under conservation agricultural practices;whereas,the cropland was under conventional management.These agricultural lands were 2-26 years old.The concentration of soil organic matter(SOM)in the upper 0-10 cm depth of these field sites ranged from 11.6 g kg^(-1)to 32.8 g kg^(-1)soil.As compared to cropland,orchards had significantly higher concentration of SOM and SOC.A total of 18 soil macrofauna species were found and the most common and abundant were ants(Monomorium minimum,Camponotus pennsylvanicus,Solenopsis invicta,and Lasius niger)followed by Arion ssp.(Brown Slug)and earthworm Lumbricus terrestris.Regression analysis revealed non-significant relationship of the age and the concentration of SOM with the number of macrofauna species and with the concentrations of total mineral nitrogen,bioavailable phosphorus and clay.The existence of ants had no relationship with the concentration of SOM;whereas,existence of Lumbricus terrestris tended to had a positive relationship with the concentration of SOM.The field of tree-based intercropping system was 2 years of age since the land was converted from rangeland to a cropland,had two ant species coexisting.This indicates the positive influence of crop diversification on soil macrofauna. 展开更多
关键词 Soil organic matter MACROFAUNA Land use history Tree-based intercropping Conservation agriculture
下载PDF
Decoding the inconsistency of six cropland maps in China
19
作者 Yifeng Cui Ronggao Liu +6 位作者 Zhichao Li Chao Zhang Xiao-Peng Song Jilin Yang Le Yu Mengxi Chen Jinwei Dong 《The Crop Journal》 SCIE CSCD 2024年第1期281-294,共14页
Accurate cropland information is critical for agricultural planning and production,especially in foodstressed countries like China.Although widely used medium-to-high-resolution satellite-based cropland maps have been... Accurate cropland information is critical for agricultural planning and production,especially in foodstressed countries like China.Although widely used medium-to-high-resolution satellite-based cropland maps have been developed from various remotely sensed data sources over the past few decades,considerable discrepancies exist among these products both in total area and in spatial distribution of croplands,impeding further applications of these datasets.The factors influencing their inconsistency are also unknown.In this study,we evaluated the consistency and accuracy of six cropland maps widely used in China in circa 2020,including three state-of-the-art 10-m products(i.e.,Google Dynamic World,ESRI Land Cover,and ESA WorldCover)and three 30-m ones(i.e.,GLC_FCS30,GlobeLand 30,and CLCD).We also investigated the effects of landscape fragmentation,climate,and agricultural management.Validation using a ground-truth sample revealed that the 10-m-resolution WorldCover provided the highest accuracy(92.3%).These maps collectively overestimated Chinese cropland area by up to 56%.Up to 37%of the land showed spatial inconsistency among the maps,concentrated mainly in mountainous regions and attributed to the varying accuracy of cropland maps,cropland fragmentation and management practices such as irrigation.Our work shed light on the promotion of future cropland mapping efforts,especially in highly inconsistent regions. 展开更多
关键词 Consistency and accuracy 10-and 30 m Cropland mapping Agricultural management China
下载PDF
How to enhance agricultural plastic waste management in China?Insights from public participation
20
作者 Aibo Hao Thomas Dogot Changbin Yin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2127-2143,共17页
Agricultural plastics play a pivotal role in agricultural production.However,due to expensive costs,agricultural plastic waste management(APWM)encounters a vast funding gap.As one of the crucial stakeholders,the publi... Agricultural plastics play a pivotal role in agricultural production.However,due to expensive costs,agricultural plastic waste management(APWM)encounters a vast funding gap.As one of the crucial stakeholders,the public deserves to make appropriate efforts for APWM.Accordingly,identifying whether the public is willing to pay for APWM and clarifying the decisions’driving pathways to explore initiatives for promoting their payment intentions are essential to address the dilemma confronting APWM.To this end,by applying the extended theory of planned behavior(TPB),the study conducted an empirical analysis based on 1,288 residents from four provinces(autonomous regions)of northern China.Results illustrate that:1)respondents hold generally positive and relatively strong payment willingness towards APWM;2)respondents’attitude(AT),subjective norm(SN),and perceived behavioral control(PBC)are positively correlated with their payment intentions(INT);3)environmental cognition(EC)and environmental emotion(EE)positively moderate the relationships between AT and INT,and between SN and INT,posing significant indirect impacts on INT.The study’s implications extend to informing government policies,suggesting that multi-entity cooperation,specifically public payment for APWM,can enhance agricultural non-point waste management. 展开更多
关键词 agricultural plastic waste extended theory of planned behavior public payment environmental cognition environmental emotion
下载PDF
上一页 1 2 168 下一页 到第
使用帮助 返回顶部