期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation 被引量:3
1
作者 Yasuo Kobayashi Seongjin Oh +1 位作者 Htun Myint Satoshi Koike 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第2期317-326,共10页
In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting... In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids,plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice. 展开更多
关键词 Agricultural byproduct Fermentation Fiber degradation Methane mitigation Microbiota Plant secondary metabolites Rumen
下载PDF
Development and characterization of mycelium bio-composites by utilization of different agricultural residual byproducts 被引量:3
2
作者 Liucheng Peng Jing Yi +2 位作者 Xinyu Yang Jing Xie Chenwei Chen 《Journal of Bioresources and Bioproducts》 EI CSCD 2023年第1期78-89,共12页
Mycelium bio-composites was developed by incubating Pleurotus ostreatus fungi on different sub-strates from agricultural residual byproducts,including rice straw,bagasse,coir-pith,sawdust,and corn straw.The scanning e... Mycelium bio-composites was developed by incubating Pleurotus ostreatus fungi on different sub-strates from agricultural residual byproducts,including rice straw,bagasse,coir-pith,sawdust,and corn straw.The scanning electron microscope(SEM)results showed that the hypha of com-posite derived from bagasse was the densest,and the diameter of hypha was the biggest(0.77μm),which was presumably due to the existence of cellulose in bagasse in the form of dextran and xylan.The maximum and minimum compression strength for sawdust substrate and corn straw substrate were 456.70 and 270.31 kPa,respectively.The flexural strength for bagasse sub-strate and rice straw substrate were 0.54 and 0.16 MPa,respectively.The two composites derived from rice straw and bagasse exhibited higher hydrophobic properties than others.In comparison,mycelium bio-composite derived from bagasse showed the best comprehensive properties.Except for a little worse anti-creep ability and waterproof performance,other properties of mycelium bio-composites could be comparable to commercially expanded polystyrene(EPS)packaging mate-rial.Derived from this study,mycelium material provided a good way to use agricultural residual byproducts and could be a good alternative to non-biodegradable materials for packaging appli-cations. 展开更多
关键词 MYCELIUM Mycelium bio-composites Pleurotus ostreatus fungi Agricultural residual byproducts Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部