From the presentation, connotation, characteristics, principles, pattern, and technologies of ecological agriculture with high efficiency, we conduct comprehensive and systematic analysis and discussion of the theoret...From the presentation, connotation, characteristics, principles, pattern, and technologies of ecological agriculture with high efficiency, we conduct comprehensive and systematic analysis and discussion of the theoretical and practical progress of ecological agriculture with high efficiency. (i) Ecological agriculture with high efficiency was first advanced in China in 1991. (ii) Ecological agriculture with high efficiency highlights "high efficiency", "ecology", and "combination". (iii) Ecological agriculture with high efficiency is characterized by diverse organisms, good environment, good structure, powerful function, good quality, high benefit, low emission, sustainability. (iv) The yield increase and efficiency increase principle of ecological agriculture with high efficiency lies in full land use, three-dimensional light use, sufficient use of season, multi-layer water consumption, efficient fertilizer consumption, symbiosis and mutual supplement, ecological disaster reduction, recycling. (v) The typical pattern of ecological agriculture with high efficiency includes three-dimensional use pattern, biological symbiosis pattern, multi-industry combination pattern, industrial extension pattern, technology-driven pattern, environmental renovation pattern, resource recycling pattern, leisure and sight-seeing pattern. (vi) The key technologies of ecological agriculture with high efficiency include resource-saving technology, water and fertilizer regulation technology, biological technology for increasing soil fertility, disaster prevention and mitigation technology, comprehensive utilization technology, water conservation technology, structural adjustment technology, energy development technology, watershed control technology, and modern high-tech technology.展开更多
In response to the strategic call for the " Great Protection" of the Yangtze River Economic Belt and to fulfill the important historical tasks assigned by the state to the provinces and cities of the area,th...In response to the strategic call for the " Great Protection" of the Yangtze River Economic Belt and to fulfill the important historical tasks assigned by the state to the provinces and cities of the area,the Yangtze River Economic Belt is adjusting the agricultural industry structure,optimizing the input-output ratio,and ensuring stable and sustainable agricultural production. Based on the combination of the three-stage Data Envelopment Analysis( DEA) model and cluster analysis,this study examined the Yangtze River Economic Belt from 2008 to 2018 to measure its agricultural production efficiency and to analyze its temporal and spatial characteristics. Studies showed that exogenous environmental factors significantly( P < 5%) impacted agricultural production efficiency in the Yangtze River Economic Zone,and there were temporal and spatial differences. These included:(1) after excluding environmental factors,the overall agricultural production efficiency of the Yangtze River Economic Zone had improved. Sichuan Province and Jiangsu Province were at the forefront of efficiency,whereas the agricultural production efficiency of Shanghai had declined obviously.(2) The agricultural production efficiency of the Yangtze River Economic Belt varied year by year,with fluctuating development. The middle reaches of the Yangtze River had advanced agricultural production efficiency more than the upstream and downstream regions,and the agricultural production efficiency of the individual provinces did not match their economic and social development.(3) Increases in labor,land,irrigation,and other input factors increased agriculture production efficiency,and there was no correlation between fiscal investment,per capita gross domestic product( GDP) and agricultural production efficiency,while the disaster-affected area had a significantly negative impact on agricultural production efficiency.展开更多
Based on the analysis of the status, characteristics and technological functions of high-efficiency ecological agricultural development in the Yellow river delta, the paper pointed out technological bottlenecks of the...Based on the analysis of the status, characteristics and technological functions of high-efficiency ecological agricultural development in the Yellow river delta, the paper pointed out technological bottlenecks of the high-efficiency ecological agricultural development in the Yellow river delta. Some suggestions were proposed including changing the development concept, implementing nine projects, increasing capital investment, focusing on demonstration, and strengthening human resources.展开更多
To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensive...To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensively studied in theory by virtue of related theories of hydromechanics and aerosol.According to actual measurements of flow coefficients and atomization angles of X-type swirl nozzle,computational formula was derived for atomized particle sizes of such a nozzle in conjunction with relevant empirical equation. Moreover, a mathematical model for applying high pressure atomization to dust removal in underground coal mine was also established to deduce theoretical computation formula of fractional efficiency. Then, Matlab was adopted to portray the relation curve between fractional efficiency and influence factors. In addition, a theoretical formula was also set up for removal efficiency of respirable dust and total coal dust based on dust size and frequency distribution equations. In the end,impacts of dust characteristic parameters on various dust removal efficiencies were analyzed.展开更多
Regulators are important components in pneumatic system, and their flow-rate characteristics are the key parameters for designers. According to the correlatively international standard and national standard of China, ...Regulators are important components in pneumatic system, and their flow-rate characteristics are the key parameters for designers. According to the correlatively international standard and national standard of China, which describe the flow-rate characteristics measurement method of pneumatic regulators, the pressure and the flow are measured point by point, and then the flow-rate characteristics curve is plotted point to point. This method has some disadvantages, such as equipment complexity, much air consumption, and low efficiency. To settle the problems presented above, this paper puts forward a new high efficient and energy saving flow-rate characteristics measurement method of regulators, which is based on the pressure response when charging and discharging to an isothermal tank without any flow meters. The measurement principle, the system and the steps are introduced. And the tracking differentiator is used for the data processing of the pressure difference. Two typical kinds of regulators were experimentally investigated, and their flow-rate characteristics curves were obtained with the new and the conventional method, respectively. Comparatively, it's proved that this new method is feasible because it is not only able to meet the demand of the measurement precision, but also to save energy and improve efficiency. Compared to the conventional method, the new method takes only about 1/10 amount of time and consumes about only 1/30 amount of air. Hopefully it will be able to serve as an international standard of flow-rate characteristics measurement method of regulators.展开更多
In order to overcome the efficiency problem of the conventional gradient-based optimal design method,a highly-efficient viscous adjoint-based RANS equations method is applied to the aerodynamic optimal design of hover...In order to overcome the efficiency problem of the conventional gradient-based optimal design method,a highly-efficient viscous adjoint-based RANS equations method is applied to the aerodynamic optimal design of hovering rotor airfoil.The C-shaped body-fitted mesh is firstly automatically generated around the airfoil by solving the Poisson equations,and the Navier-Stokes(N-S)equations combined with Spalart-Allmaras(S-A)one-equation turbulence model are used as the governing equations to acquire the reliable flowfield variables.Then,according to multi-constrained characteristics of the optimization of high lift/drag ratio for hovering rotor airfoil,its corresponding adjoint equations,boundary conditions and gradient expressions are newly derived.On these bases,two representative rotor airfoils,NACA0012 airfoil and SC1095 airfoil,are selected as numerical examples to optimize their synthesized aerodynamic characteristics about lift/drag ratio in hover,and better aerodynamic performance of optimal airfoils are obtained compared with the baseline.Furthermore,the new designed rotor with the optimized rotor airfoil has better hover aerodynamic characteristics compared with the baseline rotor.In contrast to the baseline airfoils optimized by the finite difference method,it is demonstrated that the adjoint optimal algorithm itself is practical and highly-efficient for the aerodynamic optimization of hover rotor airfoil.展开更多
为研究兆瓦级高效紧凑型核动力系统的运行特性,使用自主开发的热管堆瞬态分析程序TAPIRS(Transient Analysis code for heat Pipe and AMTEC power conversion space Reactor power System)和超临界二氧化碳布雷顿循环的瞬态分析程序SCT...为研究兆瓦级高效紧凑型核动力系统的运行特性,使用自主开发的热管堆瞬态分析程序TAPIRS(Transient Analysis code for heat Pipe and AMTEC power conversion space Reactor power System)和超临界二氧化碳布雷顿循环的瞬态分析程序SCTRAN/CO_(2)(Super Critical reactors Transient Analysis code/Carbon Dioxide)的耦合程序对其反应性、负荷、冷却水温度和流量等扰动进行了开环动态响应分析,并据此进行了控制系统设计。在此基础上,对线性变负荷、阶梯式变负荷以及甩负荷这三种变负荷运行工况进行了计算分析。结果表明:该核动力系统的转速对扰动的变化较为敏感,需要加以控制;低负荷下旁通会使压缩机流量上升,需对压缩机流量加以控制;系统在控制方案下能以6%FP(Full Power)·min^(−1)的速度实现0%~100%的负荷变动,且可以在任意负荷水平下运行;甩负荷下系统的波动时间变长,但是仍可达到新的稳态进行工作,且各参数处于安全范围内。本研究可为新型核动力系统的概念设计提供参考。展开更多
基金Supported by Key Project of National Natural Science Foundation(U1033004)
文摘From the presentation, connotation, characteristics, principles, pattern, and technologies of ecological agriculture with high efficiency, we conduct comprehensive and systematic analysis and discussion of the theoretical and practical progress of ecological agriculture with high efficiency. (i) Ecological agriculture with high efficiency was first advanced in China in 1991. (ii) Ecological agriculture with high efficiency highlights "high efficiency", "ecology", and "combination". (iii) Ecological agriculture with high efficiency is characterized by diverse organisms, good environment, good structure, powerful function, good quality, high benefit, low emission, sustainability. (iv) The yield increase and efficiency increase principle of ecological agriculture with high efficiency lies in full land use, three-dimensional light use, sufficient use of season, multi-layer water consumption, efficient fertilizer consumption, symbiosis and mutual supplement, ecological disaster reduction, recycling. (v) The typical pattern of ecological agriculture with high efficiency includes three-dimensional use pattern, biological symbiosis pattern, multi-industry combination pattern, industrial extension pattern, technology-driven pattern, environmental renovation pattern, resource recycling pattern, leisure and sight-seeing pattern. (vi) The key technologies of ecological agriculture with high efficiency include resource-saving technology, water and fertilizer regulation technology, biological technology for increasing soil fertility, disaster prevention and mitigation technology, comprehensive utilization technology, water conservation technology, structural adjustment technology, energy development technology, watershed control technology, and modern high-tech technology.
基金Supported by the Strategic Leading Science and Technology Project (Class A)of Chinese Academy of Sciences (XDA23020101)the National Natural Science Foundation of China (41801129)。
文摘In response to the strategic call for the " Great Protection" of the Yangtze River Economic Belt and to fulfill the important historical tasks assigned by the state to the provinces and cities of the area,the Yangtze River Economic Belt is adjusting the agricultural industry structure,optimizing the input-output ratio,and ensuring stable and sustainable agricultural production. Based on the combination of the three-stage Data Envelopment Analysis( DEA) model and cluster analysis,this study examined the Yangtze River Economic Belt from 2008 to 2018 to measure its agricultural production efficiency and to analyze its temporal and spatial characteristics. Studies showed that exogenous environmental factors significantly( P < 5%) impacted agricultural production efficiency in the Yangtze River Economic Zone,and there were temporal and spatial differences. These included:(1) after excluding environmental factors,the overall agricultural production efficiency of the Yangtze River Economic Zone had improved. Sichuan Province and Jiangsu Province were at the forefront of efficiency,whereas the agricultural production efficiency of Shanghai had declined obviously.(2) The agricultural production efficiency of the Yangtze River Economic Belt varied year by year,with fluctuating development. The middle reaches of the Yangtze River had advanced agricultural production efficiency more than the upstream and downstream regions,and the agricultural production efficiency of the individual provinces did not match their economic and social development.(3) Increases in labor,land,irrigation,and other input factors increased agriculture production efficiency,and there was no correlation between fiscal investment,per capita gross domestic product( GDP) and agricultural production efficiency,while the disaster-affected area had a significantly negative impact on agricultural production efficiency.
基金Supported by the Soft Science Subject of Science and Technology Department "Study on Major Problems in High-efficiency Ecological Agricultural Development Based on Science and Technology in Yellow River Delta"Wheat and Peanut Industry of Modern Agricultural System in Shandong Province
文摘Based on the analysis of the status, characteristics and technological functions of high-efficiency ecological agricultural development in the Yellow river delta, the paper pointed out technological bottlenecks of the high-efficiency ecological agricultural development in the Yellow river delta. Some suggestions were proposed including changing the development concept, implementing nine projects, increasing capital investment, focusing on demonstration, and strengthening human resources.
基金Financial provided by the National Natural Science Foundation of China (Nos. 51574123 and U1361118)the China Postdoctoral Science Foundation (No. 2015M 582118)
文摘To master theoretical calculation for dust removal efficiency of high pressure atomization in an underground coal mine, the corresponding atomization characteristics and dust removal efficiency were both comprehensively studied in theory by virtue of related theories of hydromechanics and aerosol.According to actual measurements of flow coefficients and atomization angles of X-type swirl nozzle,computational formula was derived for atomized particle sizes of such a nozzle in conjunction with relevant empirical equation. Moreover, a mathematical model for applying high pressure atomization to dust removal in underground coal mine was also established to deduce theoretical computation formula of fractional efficiency. Then, Matlab was adopted to portray the relation curve between fractional efficiency and influence factors. In addition, a theoretical formula was also set up for removal efficiency of respirable dust and total coal dust based on dust size and frequency distribution equations. In the end,impacts of dust characteristic parameters on various dust removal efficiencies were analyzed.
文摘Regulators are important components in pneumatic system, and their flow-rate characteristics are the key parameters for designers. According to the correlatively international standard and national standard of China, which describe the flow-rate characteristics measurement method of pneumatic regulators, the pressure and the flow are measured point by point, and then the flow-rate characteristics curve is plotted point to point. This method has some disadvantages, such as equipment complexity, much air consumption, and low efficiency. To settle the problems presented above, this paper puts forward a new high efficient and energy saving flow-rate characteristics measurement method of regulators, which is based on the pressure response when charging and discharging to an isothermal tank without any flow meters. The measurement principle, the system and the steps are introduced. And the tracking differentiator is used for the data processing of the pressure difference. Two typical kinds of regulators were experimentally investigated, and their flow-rate characteristics curves were obtained with the new and the conventional method, respectively. Comparatively, it's proved that this new method is feasible because it is not only able to meet the demand of the measurement precision, but also to save energy and improve efficiency. Compared to the conventional method, the new method takes only about 1/10 amount of time and consumes about only 1/30 amount of air. Hopefully it will be able to serve as an international standard of flow-rate characteristics measurement method of regulators.
文摘In order to overcome the efficiency problem of the conventional gradient-based optimal design method,a highly-efficient viscous adjoint-based RANS equations method is applied to the aerodynamic optimal design of hovering rotor airfoil.The C-shaped body-fitted mesh is firstly automatically generated around the airfoil by solving the Poisson equations,and the Navier-Stokes(N-S)equations combined with Spalart-Allmaras(S-A)one-equation turbulence model are used as the governing equations to acquire the reliable flowfield variables.Then,according to multi-constrained characteristics of the optimization of high lift/drag ratio for hovering rotor airfoil,its corresponding adjoint equations,boundary conditions and gradient expressions are newly derived.On these bases,two representative rotor airfoils,NACA0012 airfoil and SC1095 airfoil,are selected as numerical examples to optimize their synthesized aerodynamic characteristics about lift/drag ratio in hover,and better aerodynamic performance of optimal airfoils are obtained compared with the baseline.Furthermore,the new designed rotor with the optimized rotor airfoil has better hover aerodynamic characteristics compared with the baseline rotor.In contrast to the baseline airfoils optimized by the finite difference method,it is demonstrated that the adjoint optimal algorithm itself is practical and highly-efficient for the aerodynamic optimization of hover rotor airfoil.
文摘为研究兆瓦级高效紧凑型核动力系统的运行特性,使用自主开发的热管堆瞬态分析程序TAPIRS(Transient Analysis code for heat Pipe and AMTEC power conversion space Reactor power System)和超临界二氧化碳布雷顿循环的瞬态分析程序SCTRAN/CO_(2)(Super Critical reactors Transient Analysis code/Carbon Dioxide)的耦合程序对其反应性、负荷、冷却水温度和流量等扰动进行了开环动态响应分析,并据此进行了控制系统设计。在此基础上,对线性变负荷、阶梯式变负荷以及甩负荷这三种变负荷运行工况进行了计算分析。结果表明:该核动力系统的转速对扰动的变化较为敏感,需要加以控制;低负荷下旁通会使压缩机流量上升,需对压缩机流量加以控制;系统在控制方案下能以6%FP(Full Power)·min^(−1)的速度实现0%~100%的负荷变动,且可以在任意负荷水平下运行;甩负荷下系统的波动时间变长,但是仍可达到新的稳态进行工作,且各参数处于安全范围内。本研究可为新型核动力系统的概念设计提供参考。