期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Visualization Analysis of the Impact of Rubber Agroforestry Ecosystem on Soil Microbial Community
1
作者 Jianan Liu Dongling Qi +5 位作者 Chuan Yang Zhixiang Wu Yingying Zhang Qingmao Fu Xianlei Jiang Ruxin Lin 《Advances in Bioscience and Biotechnology》 CAS 2024年第8期486-502,共17页
Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using Ci... Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using CiteSpace software, we visually analyzed research literature from the Web of Science (WOS) core database, spanning 2004 to 2024. The focus was on the impact of rubber agroforestry ecosystems on soil microbial communities. The results indicate significant attention from Chinese researchers, who have published numerous influential papers in this field. Authors Liu Wenjie have contributed the most papers, although no stable core author group exists. The Chinese Academy of Sciences is the leading research institution in terms of publication volume. While there is close collaboration between different institutions and countries, the intensity of researcher cooperation is low. The most cited literature emphasizes soil nutrients and structure in rubber agroforestry, laying a foundation for soil microorganism studies. Most cited journals are from countries like Netherlands and the United Kingdom. Key research areas include the effects of rubber intercropping on soil microbial communities, agroforestry management, and soil health. Research development can be divided into three stages: the initial stage (2010-2015), the development stage (2015-2020), and the mature stage (2020-2024). Current studies show that rubber intercropping and rubber-based agroforestry systems enhance soil microbial communities, positively impacting soil health. This paper provides a theoretical basis for the sustainable development of rubber agroforestry systems and improved management plans. Future research could explore the effects of species composition on soil microbiological characteristics and develop methods for species interactions. An in-depth study of the soil microbial community’s structure and function, and its relationship with rubber trees, is crucial. Developing effective, rationally designed rubber agroforestry systems and underground soil microbiome technology will promote sustainability and improve plantation productivity. 展开更多
关键词 Rubber (Hevea brasiliensis) agroforestry ecosystem Microbe CiteSpace Bibliometrics Rubber Intercropping
下载PDF
Exploration and Practice of Rubber Based Agroforestry Complex Systems in China
2
作者 Dongling Qi Zhixiang Wu +4 位作者 Chuan Yang Zhongliang Tao Linlin Zhao Yingying Zhang Qingmao Fu 《Advances in Bioscience and Biotechnology》 2023年第12期479-491,共13页
Agroforestry ecosystems are constructed by simulating natural ecosystems, applying the principles of symbiosis in nature, and organizing multiple plant populations to coexist, while conducting targeted cultivation and... Agroforestry ecosystems are constructed by simulating natural ecosystems, applying the principles of symbiosis in nature, and organizing multiple plant populations to coexist, while conducting targeted cultivation and structural control scientifically. Rubber agroforestry complex ecosystems aim for sustainable development in terms of industry, ecology, resource utilization, and the livelihoods of producers. Rubber agroforestry complex ecosystems create a complex production structure system that integrates biology, society, and the economy through species combinations. Rubber trees and associated biological components coordinate with each other, mutually promote growth, and yield a variety of products for producers. Cultivation techniques and patterns of rubber agroforestry are essential components of these ecosystems. This study analyzes the production practices of rubber agroforestry complex cultivation, with a focus on the development and characteristics (complexity, systematicity, intensity, and hierarchy) of rubber agroforestry systems using a literature analysis and a survey approach. It explores the types and scales of complex planting, specifications and forms, and major effects of complex cultivation. This study identifies successful rubber agroforestry cultivation patterns and practical techniques, as well as the potential benefits of developing rubber agroforestry cultivation. It also points out the shortcomings in the development of complex planting, including an emphasis on production practices but insufficient theoretical research, a focus on production but inadequate attention to the market, and an emphasis on yield while overlooking the improvement of standards, brands, and added value. There are various complex patterns for young rubber plantations, but relatively fewer for mature plantations. Based on this analysis, this study suggests that future efforts should focus on in-depth research on interspecies and environmental interactions in rubber agroforestry ecosystems, clearly define key roles, accelerate the innovation of development patterns, and strengthen the foundation for development. It recommends promoting and demonstrating successful rubber agroforestry complex patterns and providing technical training, developing product branding for rubber agroforestry patterns, enhancing product value, expanding the application functions of rubber-forest mixed crop products, and establishing a stable and sustainable industry chain. This study provide practical experience and theoretical insights in rubber agroforestry complex systems from China the potential to enrich the knowledge of rubber agroforestry composite systems, provide practical experience to improve the operating income of smallholders, and even promote the sustainable development of rubber plantations. 展开更多
关键词 Rubber Tree (Hevea brasiliensis) agroforestry ecosystem Rubber Intercropping Complex Ecological Cultivation Land Resource
下载PDF
Nitrogen, phosphorus and potassium recycling in an agroforestry ecosystem of Huanghuaihai Plain: with Paulownia elongata intercropped wheat and maize as an example 被引量:3
3
作者 Wu Gang Department of Systems Ecology,Research Center for Eco Environmental Sciences, Chinese Academy of Sciences,Beijing 100085,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第2期62-69,共8页
The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 ... The studies show that in the whole community, P is deficient, and N and K are basically balanced. N, P and K are accumulated in plant tissues and litters, but depleted in soil. N and P contents in surface soil(0—20 cm) are the main factors affecting crop growth, and P contents in 20 80 cm soil layer is the major affecting Paulownia elongata growth. The absorption coefficients of N, P and K in the communities are 0 078, 0 014 and 0 052 respectively, their utilization coefficients are 0 95, 0 90 and 0 94, and the recycling coefficients are 0 042, 0 05 and 0 063 respectively. 展开更多
关键词 NITROGEN phosphorus potassium RECYCLING agroforestry ecosystem.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部