期刊文献+
共找到135,749篇文章
< 1 2 250 >
每页显示 20 50 100
具有时滞效应的air2stream河流水温模型及应用研究
1
作者 李凌波 王启明 +3 位作者 赵忠伟 唐玉川 李成明 胡艳 《水文》 CSCD 北大核心 2024年第4期45-51,共7页
高精度河流水温模型对于深入了解水温的时空变化特征和河流生态修复具有重要意义。基于数据驱动的air2stream模型在保证预测精度的同时,避免了计算的复杂性,已成为河流水温模拟常用的模型。由于水的热惯性及水文条件等的影响,河流水温... 高精度河流水温模型对于深入了解水温的时空变化特征和河流生态修复具有重要意义。基于数据驱动的air2stream模型在保证预测精度的同时,避免了计算的复杂性,已成为河流水温模拟常用的模型。由于水的热惯性及水文条件等的影响,河流水温变化往往显著滞后于气温变化,而air2stream原模型并未考虑滞后效应,导致该模型在流量未知情况下实际精度偏低。为解决该问题,采用气温-水温皮尔逊相关系数计算时滞天数,构建具有时滞的air2stream新模型,进一步根据长江中下游地区两个监测站的多年实测数据验证新模型的有效性和稳定性。结果表明:新模型在不引进额外观测数据的条件下具有更高精度且性能更稳定。相比原模型,在两个监测站新模型的均方根误差分别降低约4.29%和5.85%。新模型具有精度高、水文要素需求少的特点,可为长江中下游的水环境影响评价和生态保护提供依据。 展开更多
关键词 气温-水温模型 时滞 air2stream 长江中下游水温
下载PDF
基于Aqua卫星AIRS数据的南大洋大气逆温和逆湿特性研究
2
作者 许妍 常亮 李黎黎 《极地研究》 CAS CSCD 北大核心 2024年第2期157-168,共12页
南大洋大气普遍存在着逆温和逆湿现象,其分布和变化对海-冰-气之间的物质和通量交换具有重要影响。利用Aqua卫星上搭载的大气红外探测器(AIRS)观测数据,提取了南大洋大气的逆温和逆湿特性,并研究了其时空分布与变化特征。此外,以全球无... 南大洋大气普遍存在着逆温和逆湿现象,其分布和变化对海-冰-气之间的物质和通量交换具有重要影响。利用Aqua卫星上搭载的大气红外探测器(AIRS)观测数据,提取了南大洋大气的逆温和逆湿特性,并研究了其时空分布与变化特征。此外,以全球无线电探空数据集的探测结果为参考值,分析了AIRS在进行大气逆温和逆湿探测过程中受到云量影响的特征。结果表明,AIRS估计的逆温特性受云量的影响较小,在多云条件下AIRS也可精确地估计逆温特性。利用AIRS最新的第7版(V7)数据产品对2004-2020年南大洋大气逆温和逆湿的频率(强度)进行研究,发现秋冬季比春夏季高(强),在龙尼冰架、罗斯冰架和南极半岛附近的海域的大气出现逆温和逆湿现象较其他区域更频繁,且强度更强。 展开更多
关键词 逆温 逆湿 南大洋 Aqua卫星 airS
下载PDF
基于AirTOp的终端区扇区负荷校准方法研究
3
作者 王书策 胡明华 +2 位作者 曹树健 赵征 江斌 《航空计算技术》 2024年第3期87-90,共4页
管制员工作负荷的评估是扇区运行的一个重要论题,它对提高机场终端区容量值,进而增加航班量和经济收益具有重要意义。结合北京终端区的管制员实际工作负荷评估和校准工作,提出了一种基于AirTOp仿真软件的终端区进近扇区负荷校准的新思... 管制员工作负荷的评估是扇区运行的一个重要论题,它对提高机场终端区容量值,进而增加航班量和经济收益具有重要意义。结合北京终端区的管制员实际工作负荷评估和校准工作,提出了一种基于AirTOp仿真软件的终端区进近扇区负荷校准的新思路和方法。通过对比同等运行环境下的实际管制负荷与仿真输出,校准管制负荷权重设置,获得一个可用于仿真管制员负荷评估的负荷权值汇总表,使用交叉验证方法将校准后的权值作为输入进行面向扇区的计算机仿真。结果显示仿真负荷与实际负荷偏差值小于±2,证明该校准方法可以适用于对复杂终端区扇区负荷的评估。 展开更多
关键词 复杂终端区 管制负荷 计算机仿真 空中交通规划 airTOp
下载PDF
基于级联角度的AIRS辅助大规模MIMO系统波束跟踪方案
4
作者 马露洁 梁彦 李飞 《系统工程与电子技术》 EI CSCD 北大核心 2024年第7期2515-2524,共10页
智能反射表面(intelligent reflecting surface,IRS)可以通过提供额外的视线(line of sight,LoS)路径补偿传播损耗或解决阻塞问题,有效地提高毫米波(millimeter wave,mmWave)通信系统的性能,被认为是下一代移动通信的核心技术。与传统... 智能反射表面(intelligent reflecting surface,IRS)可以通过提供额外的视线(line of sight,LoS)路径补偿传播损耗或解决阻塞问题,有效地提高毫米波(millimeter wave,mmWave)通信系统的性能,被认为是下一代移动通信的核心技术。与传统的地面IRS相比,部署在无人机、热气球等空中平台上的空中IRS(aerial IRS,AIRS)结合了空中平台的高移动特性/旋转特性和IRS提供的优质链路特性,可以提供更广阔的信号覆盖范围。考虑到现实场景中用户的移动性,通信系统有必要实时调整波束成形以使波束对准移动用户。然而,AIRS不具备有源射频链,难以在AIRS处获取离开角和到达角,增加了波束跟踪的复杂性。针对这一问题,建立了具有时变信道的AIRS辅助mmWave大规模多输入多输出(multiple input multiple output,MIMO)系统模型,结合基站端有源波束成形、AIRS的旋转角度和无源波束成形设计,提出了一种基于级联角度的无迹卡尔曼滤波波束跟踪方案。仿真结果表明,提出的方案具有较高的跟踪精度,同时AIRS的旋转特性对提升系统可达速率起着重要作用。 展开更多
关键词 空中智能反射面 波束成形 波束跟踪 大规模多输入多输出 毫米波
下载PDF
磁共振AIR-魔毯线圈在胸椎结核扫描中的应用价值
5
作者 徐冬 王玉群 +1 位作者 孙萌萌 侯代伦 《医学影像学杂志》 2024年第6期118-120,共3页
目的探讨联合应用AIR-魔毯线圈磁共振成像(MRI)对胸椎结核扫描图像信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR)和脂肪抑制成像效果的价值。方法选取我院80例经手术病理证实为胸椎结核患者,按1:1随机... 目的探讨联合应用AIR-魔毯线圈磁共振成像(MRI)对胸椎结核扫描图像信噪比(signal to noise ratio,SNR)、对比噪声比(contrast to noise ratio,CNR)和脂肪抑制成像效果的价值。方法选取我院80例经手术病理证实为胸椎结核患者,按1:1随机分为两组,应用常规线圈(脊柱相控阵线圈,头颈联合线圈)、常规线圈联合AIR魔毯线圈对两组患者分别进行扫描。扫描序列包括胸椎矢状位T_(2)WI,T_(1)WI,T_(2)FLEX,进一步测量、比较SNR,CNR及脂肪抑制效果,分析MRI多序列诊断胸腰椎结核的准确率、特异度和灵敏度。结果常规线圈联合AIR-魔毯线圈扫描组,胸椎矢状位图像的SNR、CNR及压脂效果优于常规线圈组。结论联合应用AIR-魔毯线圈的图像SNR、CNR得到提高,脂肪抑制效果稳定良好。 展开更多
关键词 胸椎结核 磁共振成像 air-魔毯线圈 信噪比 对比噪声比
下载PDF
Effect of different cold air intensities and their lagged effects on outpatient visits for respiratory illnesses in Handan in different seasons 被引量:1
6
作者 Xingshan Zhang Guiqin Fu +4 位作者 Liang Zhao Ji Wang Caimeng Liang Juanhuai Wang Meng Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第1期39-44,共6页
本文利用2016年到2019年邯郸市气象要素和呼吸系统疾病门诊数据,分析了不同季节不同强度的冷空气过程及其对呼吸系统疾病的影响,结果显示:尽管呼吸系统疾病在冬季高发,夏季最低,但冷空气对呼吸系统疾病的影响在夏,春季最大,就诊人数分... 本文利用2016年到2019年邯郸市气象要素和呼吸系统疾病门诊数据,分析了不同季节不同强度的冷空气过程及其对呼吸系统疾病的影响,结果显示:尽管呼吸系统疾病在冬季高发,夏季最低,但冷空气对呼吸系统疾病的影响在夏,春季最大,就诊人数分别在冷空气日后两天和五天增加18.4%和13.3%,而冬季就诊人数在冷空气日后三天仅增加3.2%.冷空气对疾病影响的滞后时间在夏,秋和冬季随冷空气强度的增加而减少,而春季的滞后时间总是很长.这些发现可为科学应对气候异常导致的人群健康风险提供针对性依据. 展开更多
关键词 冷空气过程 降温幅度 呼吸系统疾病 滞后效应
下载PDF
Effects of air damping on quality factors of different probes in tapping mode atomic force microscopy
7
作者 Yu Zeng Guo-Lin Liu +1 位作者 Jin-Hao Liu Zheng Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期506-519,共14页
The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this ... The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically,and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process.The quality factors can be used to characterize the energy dissipation in TM-AFM systems.In this study,the vibration model of the microcantilever beam was established,coupling the vibration and damping effects of the microcantilever beam.The quality factor of the vibrating microcantilever beam under damping was derived,and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated.In addition,the mechanism of the damping effects of different shapes of probes at different tip–sample distances was analyzed.The accuracy of the theoretical simplified model was verified using both experimental and simulation methods.A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode,which was very important for improving both the quality factor and the imaging quality of the TM-AFM system.This study’s research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems. 展开更多
关键词 TM-AFM quality FACTORS air VISCOUS DAMPING air SQUEEZE film DAMPING
下载PDF
Fluid-chemical modeling of the near-cathode sheath formation process in a high current broken in DC air circuit breaker
8
作者 彭世东 李静 +3 位作者 段薇 曹云东 刘树鑫 黄浩 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期523-538,共16页
When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop thr... When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment. 展开更多
关键词 near-cathode sheath atmospheric pressure air arc fluid-chemical model high current DC air circuit breaker(DCCB)
下载PDF
Study of three-dimensional spatial diffuse discharge in contact electrode structure applied to air purification
9
作者 Shuai XU Wenzheng LIU +3 位作者 Jiaying QIN Yiwei SUN Xitao JIANG Qi QI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期73-81,共9页
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ... In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out. 展开更多
关键词 dielectric barrier discharge three-dimensional spatial discharge atmospheric pressure air diffusion discharge air purification
下载PDF
Microstructure design of advanced magnesium-air battery anodes
10
作者 Xu Huang Qingwei Dai +4 位作者 Qing Xiang Na Yang Gaopeng Zhang Ao Shen Wanming Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期443-464,共22页
Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy de... Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode. 展开更多
关键词 MAGNESIUM air battery ANODE MICROSTRUCTURE Anodic efficiency
下载PDF
Mastering air combat game with deep reinforcement learning
11
作者 Jingyu Zhu Minchi Kuang +3 位作者 Wenqing Zhou Heng Shi Jihong Zhu Xu Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期295-312,共18页
Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem ... Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem of plasticity loss in neural networks.Plasticity loss is the difficulty of learning new knowledge after the network has converged.To this end,we propose a motivational curriculum learning distributed proximal policy optimization(MCLDPPO)algorithm,through which trained agents can significantly outperform the predictive game tree and mainstream reinforcement learning methods.The motivational curriculum learning is designed to help the agent gradually improve its combat ability by observing the agent's unsatisfactory performance and providing appropriate rewards as a guide.Furthermore,a complete tactical maneuver is encapsulated based on the existing air combat knowledge,and through the flexible use of these maneuvers,some tactics beyond human knowledge can be realized.In addition,we designed an interruption mechanism for the agent to increase the frequency of decisionmaking when the agent faces an emergency.When the number of threats received by the agent changes,the current action is interrupted in order to reacquire observations and make decisions again.Using the interruption mechanism can significantly improve the performance of the agent.To simulate actual air combat better,we use digital twin technology to simulate real air battles and propose a parallel battlefield mechanism that can run multiple simulation environments simultaneously,effectively improving data throughput.The experimental results demonstrate that the agent can fully utilize the situational information to make reasonable decisions and provide tactical adaptation in the air combat,verifying the effectiveness of the algorithmic framework proposed in this paper. 展开更多
关键词 air combat MCLDPPO Interruption mechanism Digital twin Distributed system
下载PDF
Effects of dust controls on respirable coal mine dust composition and particle sizes:case studies on auxiliary scrubbers and canopy air curtain
12
作者 F.Animah C.Keles +1 位作者 W.R.Reed E.Sarver 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期86-101,共16页
Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effective... Control of dust in underground coal mines is critical for mitigating both safety and health hazards.For decades,the National Institute of Occupational Safety and Health(NIOSH)has led research to evaluate the effectiveness of various dust control technologies in coal mines.Recent studies have included the evaluation of auxiliary scrubbers to reduce respirable dust downstream of active mining and the use of canopy air curtains(CACs)to reduce respirable dust in key operator positions.While detailed dust characterization was not a focus of such studies,this is a growing area of interest.Using preserved filter samples from three previous NIOSH studies,the current work aims to explore the effect of two different scrubbers(one wet and one dry)and a roof bolter CAC on respirable dust composition and particle size distribution.For this,the preserved filter samples were analyzed by thermogravimetric analysis and/or scanning electron microscopy with energy dispersive X-ray.Results indicate that dust composition was not appreciably affected by either scrubber or the CAC.However,the wet scrubber and CAC appeared to decrease the overall particle size distribution.Such an effect of the dry scrubber was not consistently observed,but this is probably related to the particular sampling location downstream of the scrubber which allowed for significant mixing of the scrubber exhaust and other return air.Aside from the insights gained with respect to the three specific dust control case studies revisited here,this work demonstrates the value of preserved dust samples for follow-up investigation more broadly. 展开更多
关键词 Respirable dust Dust control SEM–EDX SCRUBBER Canopy air curtain SILICA
下载PDF
Artificial ground freezing of underground mines in cold regions using thermosyphons with air insulation
13
作者 Ahmad F.Zueter Mohammad Zolfagharroshan +1 位作者 Navid Bahrani Agus P.Sasmito 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期643-654,共12页
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl... Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF. 展开更多
关键词 Artificial ground freezing Underground mining Sustainable mining THERMOSYPHON air insulation Cold regions
下载PDF
Air pressure law of a reservoir constructed in karst sinkholes
14
作者 YU Bo TAI Shengping +4 位作者 ZHENG Kexun CHEN Shiwan HAN Xiao WANG Senlin ZUO Shuangying 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1048-1057,共10页
Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst... Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst channels for water and air,which would cause remarkable air pressure in karst channels when the groundwater level fluctuates.A large laboratory simulation test was carried out to study the air pressure variation of a reservoir built on the karst sinkhole.The air pressure in the karst channel and inside the model was monitored during the groundwater rising and falling process.Result showed that the variation of air pressure in the karst channel and the surrounding rock exhibited a high degree of similarity.The air pressure increased rapidly at the initial stage of water level rising,followed by a slight decrease,then the air pressure increased sharply when the water level approached the top of the karst cave.The initial peak of air pressure and the final peak of air pressure were defined,and both air pressure peaks were linearly increasing with the water level rising rate.The negative air pressure was also analyzed during the drainage process,which was linearly correlated with the water level falling rate.The causes of air pressure variation in karst channels of a pumped storage reservoir built on the karst sinkhole were discussed.The initial rapid increase,then slight decrease and final sudden increase of air pressure were controlled by the combined effects of air compression in karst channel and air seepage into the surrounding rock.For the drainage process,the instant negative air pressure and gradual recovering of air pressure were controlled by the combined effects of negative air pressure induced by water level falling and air supply from surrounding rock.This work could provide valuable reference for the reservoir construction in karst area. 展开更多
关键词 Simulation test Karst sinkhole Pumped storage reservoir air pressure Flow rate
下载PDF
Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations
15
作者 贾怡康 李甜会 +5 位作者 张瑞 赵鹏瑜 王子丰 陈旻 郭莉 刘定新 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期50-61,共12页
Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive ... Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive species,which can be regulated by the activation process.In this study,surface plasma-activated air(SAA)and a He+O_(2)plasma jet(Jet)were parallelly combined(the SAA+Jet combination)or sequentially combined(the SAA→Jet combination and the Jet→SAA combination)to prepare plasma-activated saline(PAS).The PAS activated by the combinations exhibited stronger bactericidal effects than that activated by the SAA or the Jet alone.The concentrations of H_(2)O_(2)and NO_(2)^(-)were higher in the PAS activated by the Jet→SAA combination,while ONOO^(-)concentrations were close in the three kinds of PAS and^(1)O_(2)concentrations were higher in the PAS activated by the SAA+Jet combination.The analysis of scavengers also demonstrated that H_(2)O_(2),^(1)O_(2),and ONOO^(-)in the PAS activated by the SAA+Jet combination,and^(1)O_(2)in the PAS activated by the Jet→SAA combination played critical roles in bactericidal effects.Further,the effective placement time of the three PAS varied,and the PAS activated by the Jet→SAA combination could also inactivate 2.6-log_(10)of MRSA cells after placement for more than 60 min.The regulation of reactive species in plasma-activated water via different combinations of plasma devices could improve the directional application of plasma-activated water in the biomedical field. 展开更多
关键词 plasma-activated water surface plasma-activated air plasma jet bactericidal effect reactive species
下载PDF
Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data
16
作者 SangSeok Lee HaeWon Moon Lee Sael 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期319-336,共18页
How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form... How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events. 展开更多
关键词 Dynamic decomposition tucker tensor tensor factorization spatiotemporal data tensor analysis air quality
下载PDF
Influences of the Fresh Air Volume on the Removal of Cough-Released Droplets in a Passenger Car of a High-Speed Train Using CFD
17
作者 Jun Xu Kai Bi +7 位作者 Yibin Lu TiantianWang Hang Zhang Zeyuan Zheng Fushan Shi Yaxin Zheng Xiaoying Li Jingping Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2727-2748,共22页
The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volu... The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics(CFD)method.In addition,the structure of indoor flow fields was also analysed.The results show that the large eddies are more stable and flow faster in the air supply under Mode 2(fresh air volume:2200m3/h)compared to Mode 1(fresh air volume:1100m3/h).By analysing the spreading process of droplets sprayed at different locations in the passenger car and with different particle sizes,the removal trends for droplets are found to be similar under the two air supply modes.However,when increasing the fresh air flow volume,the droplets in the middle and front areas of the passenger car are removed faster.When the droplets had dispersed for 60s,Mode 2 exhibited a removal rate approximately 1%–3%higher than Mode 1 for small and medium-sized droplets with diameters of 10 and 50μm.While those in the rear area,the situation is reversed,with Mode 1 slightly surpassing Mode 2 by 1%–3%.For large droplets with a diameter of 100μm,both modes achieved a removal rate of over 96%in all three regions at the 60 s.The results can provide guidance for air supply modes of passenger cars of high-speed trains,thus suppressing the spread of virus-carrying droplets and reducing the risk of viral infection among passengers. 展开更多
关键词 Cough-released pollutants CFD ventilation inside trains supply air volume
下载PDF
Experimental study on secondary air mixing along the bed height in a circulating fluidized bed with a multitracer-gas method
18
作者 Qingyu Zhang Leming Cheng +3 位作者 Kun Li Qixun Kang Qiang Guo Chaogang Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期54-62,共9页
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe... A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic. 展开更多
关键词 Circulating fluidized bed Secondary air injection Gas mixing Multitracer-gas method
下载PDF
Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells
19
作者 Na Yu Idris Temitope Bello +4 位作者 Xi Chen Tong Liu Zheng Li Yufei Song Meng Ni 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期308-324,共17页
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7... Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage. 展开更多
关键词 Reversible protonic ceramic cells air electrode Ruddlesden-Popper perovskite HYDRATION Oxygen reduction reaction
下载PDF
Factors Influencing the Spatial Variability of Air Temperature Urban Heat Island Intensity in Chinese Cities
20
作者 Heng LYU Wei WANG +3 位作者 Keer ZHANG Chang CAO Wei XIAO Xuhui LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期817-829,共13页
Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spat... Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land. 展开更多
关键词 air temperature urban heat island spatial variations biophysical drivers Chinese cities climate model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部