期刊文献+
共找到134,036篇文章
< 1 2 250 >
每页显示 20 50 100
Mapping Air Quality Using Remote Sensing Technology: A Case Study of Nairobi County
1
作者 Quinto Juma Meltus Faith Njoki Karanja 《Open Journal of Air Pollution》 2024年第1期1-22,共22页
Nairobi County experiences rapid industrialization and urbanization that contributes to the deteriorating state of air quality, posing a potential health risk to its growing population. Currently, in Nairobi County, m... Nairobi County experiences rapid industrialization and urbanization that contributes to the deteriorating state of air quality, posing a potential health risk to its growing population. Currently, in Nairobi County, most air quality monitoring stations use low-cost, inaccurate monitors prone to defects. The study’s objective was to map Nairobi County’s air quality using freely available remotely sensed imagery. The Air Pollution Index (API) formula was used to characterize the air quality from cloud-free Landsat satellite images i.e., Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI from Google Earth Engine. The API values were computed based on vegetation indices namely NDVI, TVI, DVI, and the SWIR1 and NIR bands on the QGIS platform. Qualitative accuracy assessment was done using sample points drawn from residential, industrial, green spaces, and traffic hotspot categories, based on a passive-random sampling technique. In this study, Landsat 5 API imagery for 2010 provided a reliable representation of local conditions but indicated significant pollution in green spaces, with recorded values ranging from -143 to 334. The study found that Landsat 7 API imagery in 2002 showed expected results with the range of values being -55 to 287, while Landsat 8 indicated high pollution levels in Nairobi. The results emphasized the importance of air quality factors in API calibration and the unmatched spatial coverage of satellite observations over ground-based monitoring techniques. The study recommends the recalibration of the API formula for characteristic regions, exploring newer satellite sensors like those onboard Landsat 9 and Sentinel 2, and involving key stakeholders in a discourse to develop a suitable Kenyan air quality index. 展开更多
关键词 air Quality air Pollution Index (API) Satellite Imagery Vegetation Indices Nairobi County
下载PDF
Fluid-chemical modeling of the near-cathode sheath formation process in a high current broken in DC air circuit breaker
2
作者 彭世东 李静 +3 位作者 段薇 曹云东 刘树鑫 黄浩 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期523-538,共16页
When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop thr... When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment. 展开更多
关键词 near-cathode sheath atmospheric pressure air arc fluid-chemical model high current DC air circuit breaker(DCCB)
下载PDF
Recent progress of self-supported air electrodes for flexible Zn-air batteries
3
作者 Chen Xu Yanli Niu +5 位作者 Vonika Ka-Man Au Shuaiqi Gong Xuan Liu Jianying Wang Deli Wu Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期110-136,I0004,共28页
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among... Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed. 展开更多
关键词 Bifunctional electrocatalysts Oxygen reduction reaction Oxygen evolution reaction Self-supported air electrodes Flexible zinc-air batteries
下载PDF
Space/Air Covert Communications:Potentials,Scenarios,and Key Technologies
4
作者 Mao Haobin Liu Yanming +5 位作者 Zhu Lipeng Mao Tianqi Xiao Zhenyu Zhang Rui Han Zhu Xia Xianggen 《China Communications》 SCIE CSCD 2024年第3期1-18,共18页
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wirel... Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation. 展开更多
关键词 artificial intelligence(AI) sixth generation(6G) space-air-ground integrated networks(SAGINs) space/air covert communications
下载PDF
基于Aqua卫星AIRS数据的南大洋大气逆温和逆湿特性研究
5
作者 许妍 常亮 李黎黎 《极地研究》 CAS CSCD 北大核心 2024年第2期157-168,共12页
南大洋大气普遍存在着逆温和逆湿现象,其分布和变化对海-冰-气之间的物质和通量交换具有重要影响。利用Aqua卫星上搭载的大气红外探测器(AIRS)观测数据,提取了南大洋大气的逆温和逆湿特性,并研究了其时空分布与变化特征。此外,以全球无... 南大洋大气普遍存在着逆温和逆湿现象,其分布和变化对海-冰-气之间的物质和通量交换具有重要影响。利用Aqua卫星上搭载的大气红外探测器(AIRS)观测数据,提取了南大洋大气的逆温和逆湿特性,并研究了其时空分布与变化特征。此外,以全球无线电探空数据集的探测结果为参考值,分析了AIRS在进行大气逆温和逆湿探测过程中受到云量影响的特征。结果表明,AIRS估计的逆温特性受云量的影响较小,在多云条件下AIRS也可精确地估计逆温特性。利用AIRS最新的第7版(V7)数据产品对2004-2020年南大洋大气逆温和逆湿的频率(强度)进行研究,发现秋冬季比春夏季高(强),在龙尼冰架、罗斯冰架和南极半岛附近的海域的大气出现逆温和逆湿现象较其他区域更频繁,且强度更强。 展开更多
关键词 逆温 逆湿 南大洋 Aqua卫星 airS
下载PDF
基于AirTOp的终端区扇区负荷校准方法研究
6
作者 王书策 胡明华 +2 位作者 曹树健 赵征 江斌 《航空计算技术》 2024年第3期87-90,共4页
管制员工作负荷的评估是扇区运行的一个重要论题,它对提高机场终端区容量值,进而增加航班量和经济收益具有重要意义。结合北京终端区的管制员实际工作负荷评估和校准工作,提出了一种基于AirTOp仿真软件的终端区进近扇区负荷校准的新思... 管制员工作负荷的评估是扇区运行的一个重要论题,它对提高机场终端区容量值,进而增加航班量和经济收益具有重要意义。结合北京终端区的管制员实际工作负荷评估和校准工作,提出了一种基于AirTOp仿真软件的终端区进近扇区负荷校准的新思路和方法。通过对比同等运行环境下的实际管制负荷与仿真输出,校准管制负荷权重设置,获得一个可用于仿真管制员负荷评估的负荷权值汇总表,使用交叉验证方法将校准后的权值作为输入进行面向扇区的计算机仿真。结果显示仿真负荷与实际负荷偏差值小于±2,证明该校准方法可以适用于对复杂终端区扇区负荷的评估。 展开更多
关键词 复杂终端区 管制负荷 计算机仿真 空中交通规划 airTOp
下载PDF
Microstructure design of advanced magnesium-air battery anodes
7
作者 Xu Huang Qingwei Dai +4 位作者 Qing Xiang Na Yang Gaopeng Zhang Ao Shen Wanming Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期443-464,共22页
Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy de... Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode. 展开更多
关键词 MAGNESIUM air battery ANODE MICROSTRUCTURE Anodic efficiency
下载PDF
Mastering air combat game with deep reinforcement learning
8
作者 Jingyu Zhu Minchi Kuang +3 位作者 Wenqing Zhou Heng Shi Jihong Zhu Xu Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期295-312,共18页
Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem ... Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem of plasticity loss in neural networks.Plasticity loss is the difficulty of learning new knowledge after the network has converged.To this end,we propose a motivational curriculum learning distributed proximal policy optimization(MCLDPPO)algorithm,through which trained agents can significantly outperform the predictive game tree and mainstream reinforcement learning methods.The motivational curriculum learning is designed to help the agent gradually improve its combat ability by observing the agent's unsatisfactory performance and providing appropriate rewards as a guide.Furthermore,a complete tactical maneuver is encapsulated based on the existing air combat knowledge,and through the flexible use of these maneuvers,some tactics beyond human knowledge can be realized.In addition,we designed an interruption mechanism for the agent to increase the frequency of decisionmaking when the agent faces an emergency.When the number of threats received by the agent changes,the current action is interrupted in order to reacquire observations and make decisions again.Using the interruption mechanism can significantly improve the performance of the agent.To simulate actual air combat better,we use digital twin technology to simulate real air battles and propose a parallel battlefield mechanism that can run multiple simulation environments simultaneously,effectively improving data throughput.The experimental results demonstrate that the agent can fully utilize the situational information to make reasonable decisions and provide tactical adaptation in the air combat,verifying the effectiveness of the algorithmic framework proposed in this paper. 展开更多
关键词 air combat MCLDPPO Interruption mechanism Digital twin Distributed system
下载PDF
Artificial ground freezing of underground mines in cold regions using thermosyphons with air insulation
9
作者 Ahmad F.Zueter Mohammad Zolfagharroshan +1 位作者 Navid Bahrani Agus P.Sasmito 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期643-654,共12页
Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl... Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF. 展开更多
关键词 Artificial ground freezing Underground mining Sustainable mining THERMOSYPHON air insulation Cold regions
下载PDF
Air pressure law of a reservoir constructed in karst sinkholes
10
作者 YU Bo TAI Shengping +4 位作者 ZHENG Kexun CHEN Shiwan HAN Xiao WANG Senlin ZUO Shuangying 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1048-1057,共10页
Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst... Karst sinkholes with natural negative landform provide favorable conditions for the pumped storage reservoir construction for less excavation work.However,the construction of the reservoir would plug the natural karst channels for water and air,which would cause remarkable air pressure in karst channels when the groundwater level fluctuates.A large laboratory simulation test was carried out to study the air pressure variation of a reservoir built on the karst sinkhole.The air pressure in the karst channel and inside the model was monitored during the groundwater rising and falling process.Result showed that the variation of air pressure in the karst channel and the surrounding rock exhibited a high degree of similarity.The air pressure increased rapidly at the initial stage of water level rising,followed by a slight decrease,then the air pressure increased sharply when the water level approached the top of the karst cave.The initial peak of air pressure and the final peak of air pressure were defined,and both air pressure peaks were linearly increasing with the water level rising rate.The negative air pressure was also analyzed during the drainage process,which was linearly correlated with the water level falling rate.The causes of air pressure variation in karst channels of a pumped storage reservoir built on the karst sinkhole were discussed.The initial rapid increase,then slight decrease and final sudden increase of air pressure were controlled by the combined effects of air compression in karst channel and air seepage into the surrounding rock.For the drainage process,the instant negative air pressure and gradual recovering of air pressure were controlled by the combined effects of negative air pressure induced by water level falling and air supply from surrounding rock.This work could provide valuable reference for the reservoir construction in karst area. 展开更多
关键词 Simulation test Karst sinkhole Pumped storage reservoir air pressure Flow rate
下载PDF
Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations
11
作者 贾怡康 李甜会 +5 位作者 张瑞 赵鹏瑜 王子丰 陈旻 郭莉 刘定新 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期50-61,共12页
Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive ... Plasma-activated water(PAW),as an extended form of cold atmospheric-pressure plasma,greatly expands the application of plasma-based technology.The biological effects of PAW are closely related to the aqueous reactive species,which can be regulated by the activation process.In this study,surface plasma-activated air(SAA)and a He+O_(2)plasma jet(Jet)were parallelly combined(the SAA+Jet combination)or sequentially combined(the SAA→Jet combination and the Jet→SAA combination)to prepare plasma-activated saline(PAS).The PAS activated by the combinations exhibited stronger bactericidal effects than that activated by the SAA or the Jet alone.The concentrations of H_(2)O_(2)and NO_(2)^(-)were higher in the PAS activated by the Jet→SAA combination,while ONOO^(-)concentrations were close in the three kinds of PAS and^(1)O_(2)concentrations were higher in the PAS activated by the SAA+Jet combination.The analysis of scavengers also demonstrated that H_(2)O_(2),^(1)O_(2),and ONOO^(-)in the PAS activated by the SAA+Jet combination,and^(1)O_(2)in the PAS activated by the Jet→SAA combination played critical roles in bactericidal effects.Further,the effective placement time of the three PAS varied,and the PAS activated by the Jet→SAA combination could also inactivate 2.6-log_(10)of MRSA cells after placement for more than 60 min.The regulation of reactive species in plasma-activated water via different combinations of plasma devices could improve the directional application of plasma-activated water in the biomedical field. 展开更多
关键词 plasma-activated water surface plasma-activated air plasma jet bactericidal effect reactive species
下载PDF
Block Incremental Dense Tucker Decomposition with Application to Spatial and Temporal Analysis of Air Quality Data
12
作者 SangSeok Lee HaeWon Moon Lee Sael 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期319-336,共18页
How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form... How can we efficiently store and mine dynamically generated dense tensors for modeling the behavior of multidimensional dynamic data?Much of the multidimensional dynamic data in the real world is generated in the form of time-growing tensors.For example,air quality tensor data consists of multiple sensory values gathered from wide locations for a long time.Such data,accumulated over time,is redundant and consumes a lot ofmemory in its raw form.We need a way to efficiently store dynamically generated tensor data that increase over time and to model their behavior on demand between arbitrary time blocks.To this end,we propose a Block IncrementalDense Tucker Decomposition(BID-Tucker)method for efficient storage and on-demand modeling ofmultidimensional spatiotemporal data.Assuming that tensors come in unit blocks where only the time domain changes,our proposed BID-Tucker first slices the blocks into matrices and decomposes them via singular value decomposition(SVD).The SVDs of the time×space sliced matrices are stored instead of the raw tensor blocks to save space.When modeling from data is required at particular time blocks,the SVDs of corresponding time blocks are retrieved and incremented to be used for Tucker decomposition.The factor matrices and core tensor of the decomposed results can then be used for further data analysis.We compared our proposed BID-Tucker with D-Tucker,which our method extends,and vanilla Tucker decomposition.We show that our BID-Tucker is faster than both D-Tucker and vanilla Tucker decomposition and uses less memory for storage with a comparable reconstruction error.We applied our proposed BID-Tucker to model the spatial and temporal trends of air quality data collected in South Korea from 2018 to 2022.We were able to model the spatial and temporal air quality trends.We were also able to verify unusual events,such as chronic ozone alerts and large fire events. 展开更多
关键词 Dynamic decomposition tucker tensor tensor factorization spatiotemporal data tensor analysis air quality
下载PDF
Influences of the Fresh Air Volume on the Removal of Cough-Released Droplets in a Passenger Car of a High-Speed Train Using CFD
13
作者 Jun Xu Kai Bi +7 位作者 Yibin Lu TiantianWang Hang Zhang Zeyuan Zheng Fushan Shi Yaxin Zheng Xiaoying Li Jingping Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2727-2748,共22页
The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volu... The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics(CFD)method.In addition,the structure of indoor flow fields was also analysed.The results show that the large eddies are more stable and flow faster in the air supply under Mode 2(fresh air volume:2200m3/h)compared to Mode 1(fresh air volume:1100m3/h).By analysing the spreading process of droplets sprayed at different locations in the passenger car and with different particle sizes,the removal trends for droplets are found to be similar under the two air supply modes.However,when increasing the fresh air flow volume,the droplets in the middle and front areas of the passenger car are removed faster.When the droplets had dispersed for 60s,Mode 2 exhibited a removal rate approximately 1%–3%higher than Mode 1 for small and medium-sized droplets with diameters of 10 and 50μm.While those in the rear area,the situation is reversed,with Mode 1 slightly surpassing Mode 2 by 1%–3%.For large droplets with a diameter of 100μm,both modes achieved a removal rate of over 96%in all three regions at the 60 s.The results can provide guidance for air supply modes of passenger cars of high-speed trains,thus suppressing the spread of virus-carrying droplets and reducing the risk of viral infection among passengers. 展开更多
关键词 Cough-released pollutants CFD ventilation inside trains supply air volume
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
14
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
Factors Influencing the Spatial Variability of Air Temperature Urban Heat Island Intensity in Chinese Cities
15
作者 Heng LYU Wei WANG +3 位作者 Keer ZHANG Chang CAO Wei XIAO Xuhui LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期817-829,共13页
Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spat... Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land. 展开更多
关键词 air temperature urban heat island spatial variations biophysical drivers Chinese cities climate model
下载PDF
Analysis of the Erosion-Corrosion Mechanism of the Air Cooler in a Hydrocracking Unit:A Numerical and Experimental Study
16
作者 Su Guoqing Li Yan +1 位作者 Guo Hongli Zhang Jianwen 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期126-138,共13页
Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm... Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation. 展开更多
关键词 air cooler hydrocracking unit EROSION-CORROSION SIMULATION visualization experiment multiphase flow
下载PDF
Dynamic propagation velocity of a positive streamer in a 3 m air gap under lightning impulse voltage
17
作者 李志伟 雷挺 +5 位作者 苏宇 姚修远 杨冰雪 刘德龙 律方成 丁玉剑 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期114-121,共8页
Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning imp... Streamers represent an important stage in the initiation of gap discharge. In this work, we used an eight-frame intensified charge-coupled device camera to capture the streamer development process when a lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod–plate gap and the streamer velocity was analyzed. Analysis of the observations shows that streamer velocity can be defined by three stages: rapid velocity decline(stage 1), rapid velocity rise(stage 2)and slow velocity decline(stage 3). The effects of electrode shape, applied voltage and gap breakdown or withstanding on streamer velocity were analyzed. The electrode with a larger radius of curvature will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with previous results and the statistical characteristics of the primary streamer discharge are discussed. 展开更多
关键词 lightning impulse 3 m air gap development process streamer velocity
下载PDF
A Study on the Performances of Solar Air Collectors Having a Hemispherical Dimple on the Absorber Plate
18
作者 Shuilian Li Fan Zeng Xinli Wei 《Fluid Dynamics & Materials Processing》 EI 2024年第5期939-955,共17页
In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynam... In order to increase the efficiency of solar air collectors,a new variant with a protrusion is proposed in this study,and its performances are analyzed from two points of view,namely,in terms of optics and thermodynamics aspects.By comparing and analyzing the light paths of the protrusion and the dimple,it can be concluded that when sunlight shines on the dimple,it is reflected and absorbed multiple times,whereas for the sunlight shining on the protrusion,there is no secondary reflection or absorption of light.When the lighting area and the properties of the surfaces are the same,the absorption rate of the dimple is 10.3 percentage points higher than that of the protrusion.In the range of Reynolds number from 3000 to 11000,numerical simulations about the effects of the relative height(e/Dh=0.033–0.1)and relative spacing(p/e=4.5–8.5)of protrusions on air heat transfer and flow resistance show that,in terms of comprehensive evaluation coefficient(PF),the best relative height is 0.085,when the relative spacing is 5.A correlation of Nu and f with Re,e/Dh and p/e is obtained by linear regression of the results,in order to provide a useful reference for the design and optimization of this kind of solar air collector. 展开更多
关键词 Heat transfer hemispherical protrusion DIMPLE solar air collector CORRELATION
下载PDF
A novel nano-grade organosilicon polymer:Improving airtightness of compressed air energy storage in hard rock formations
19
作者 Zhuyan Zheng Guibin Wang +7 位作者 Chunhe Yang Hongling Ma Liming Yin Youqiang Liao Kai Zhao Zhen Zeng Hang Li Yue Han 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期305-321,共17页
Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a ... Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications. 展开更多
关键词 Compressed air energy storage LINING Permeability Transient pulse method Hard rock cavern Nano-grade organosilicon polymer coating
下载PDF
Surface air temperature change in the Wuyi Mountains,southeast China
20
作者 QIN Yihui WEI Yuxing +6 位作者 LU Jiayi MAO Jiahui CHEN Xingwei GAO Lu CHEN Ying LIU Meibing DENG Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1992-2004,共13页
Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 ... Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 meteorological stations in Wuyi Mountains and its adjacent regions to analyze the spatio-temporal patterns of temperature change.The results show that Wuyi Mountains have experienced significant warming from 1961 to 2018.The warming trend of the mean temperature is 0.20℃/decade,the maximum temperature is 0.17℃/decade,and the minimum temperature is 0.26℃/decade.In 1961-1990,more than 63%of the stations showed a decreasing trend in annual mean temperature,mainly because the maximum temperature decreased during this period.However,in 1971-2000,1981-2010 and 1991-2018,the maximum,minimum and mean temperatures increased.The fastest increasing trend of mean temperature occurred in the southeastern coastal plains,the quickest increasing trend of maximum temperature occurred in the northwestern mountainous region,and the increase of minimum temperature occurred faster in the southeastern coastal and northwestern mountainous regions than that in the central area.Meanwhile,this study suggests that elevation does not affect warming in the Wuyi Mountains.These results are beneficial for understanding climate change in humid subtropical middle and low mountains. 展开更多
关键词 Climate change Surface air temperature Temporal and spatial changes Mann-Kendall nonparametric test Wuyi Mountains
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部