期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Analysis and evaluation on pressure fluctuations in air dense medium fluidized bed 被引量:4
1
作者 Sheng Cheng Duan Chenlong +2 位作者 Zhao Yuemin Dong Liang Luo Zhenfu 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期461-467,共7页
Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and prop... Pressure fluctuations contribute to the instability of separation process in air dense medium fluidized bed, which provides a high motivation for further study of underlying mechanisms. Reasons for generation and propagation of pressure fluctuations in the air dense medium fluidized bed have been discussed.Drift rate and collision rate of particles were employed to deduce the correlation between voidage and pressure fluctuations. Simultaneously, a dynamic pressure fluctuation measuring and analysis system was established. Based on frequency domain analysis and wavelet analysis, collected signals were disassembled and analyzed. Results show gradually intensive motion of particles increases magnitudes of signal components with lower frequencies. As a result of violent particle motion, the magnitude of real pressure signal's frequency experienced an increase as air velocity increased moderately. Wavelet analysis keeps edge features of the real signal and eliminates the noise efficaciously. The frequency of denoised signal is closed to that of pressure signal identified in frequency domain analysis. 展开更多
关键词 air dense medium fluidized bed Pressure fluctuations Frequency domain analysis Wavelet analysis Particle distribution function
下载PDF
Numerical simulation and experimental verification of bubble size distribution in an air dense medium fluidized bed 被引量:11
2
作者 He Jingfeng Zhao Yuemin +2 位作者 Luo Zhenfu He Yaqun Duan Chenlong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期387-393,共7页
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ... Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB. 展开更多
关键词 air dense medium fluidized bed Numerical simulation Bubble dynamical behavior Prediction model
下载PDF
RESEARCH ON DENSITY STABILITY OF AIRDENSE MEDIUM FLUIDIZED BED 被引量:1
3
作者 骆振福 陈清如 《Journal of China University of Mining and Technology》 1994年第1期62-70,共9页
In this paper on the basis of studying the distribution of fine Coal in the dense medAn fluidised bed. the optimai size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been fo... In this paper on the basis of studying the distribution of fine Coal in the dense medAn fluidised bed. the optimai size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously aeeumulate in fluidized bed, thus inevitably reducing the density of the bed.In order to keep bed density stable, the authors adopted such measures as split-now of used medium and complement of fresb dense medium.The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have estabinbed some relative dynamic mathematical models for it. 展开更多
关键词 air dense medium fluidized bed fine coal DENSITY
下载PDF
The Forming-Mechanism and Role of Creativity Thinking in Dry Coal Beneficiation of Coal with Air-Dense Medium Fluidized Bed
4
作者 黎强 陈清如 《Journal of China University of Mining and Technology》 2001年第1期65-68,共4页
In this paper, the authors point out that the Creativity is an inevitable request in solving engineering and technological problems and that the coal beneficiation technology with air dense medium fluidized bed is a r... In this paper, the authors point out that the Creativity is an inevitable request in solving engineering and technological problems and that the coal beneficiation technology with air dense medium fluidized bed is a result of reversal thinking, and its forming mechanism is the use of other things for reference and the transplantation. 展开更多
关键词 coal beneficiation air dense medium fluidized bed creativity thinking use for reference transplantaton
下载PDF
DRY CLEANING OF COAL WITH AIR DENSE MEDIUM FLUIDIZED BED
5
作者 陈清如 杨毅 +1 位作者 余智敏 李建明 《Journal of China University of Mining and Technology》 1990年第1期42-48,共7页
This paper deals with the experimental study of dry cleaning of coal with air dense medium fluidized bed. This technique opens up an efficient way of coal separation for vast areas in the country where water resources... This paper deals with the experimental study of dry cleaning of coal with air dense medium fluidized bed. This technique opens up an efficient way of coal separation for vast areas in the country where water resources are in short supply or coals tend to slime seriously in wet process. Tests show that it can separate any kind of coal (6--50mm) efficiently. The probable error E, can reach 0.05--0.08. The separating density can be adjusted in the range of 1.0--2.0 g/cm^3. This technique brings about enormous economic benifits. 展开更多
关键词 COAL dry cleaning fluidized bed air dense medium
下载PDF
Progress in developments of dry coal beneficiation 被引量:4
6
作者 Yuemin Zhao Xuliang Yang +2 位作者 Zhenfu Luo Chenlong Duan Shulei Song 《International Journal of Coal Science & Technology》 EI CAS 2014年第1期103-112,共10页
China’s energy supply heavily relies on coal and China’s coal resource and water resource has a reverse distribution.The problem of water shortages restricts the applications of wet coal beneficiation technologies i... China’s energy supply heavily relies on coal and China’s coal resource and water resource has a reverse distribution.The problem of water shortages restricts the applications of wet coal beneficiation technologies in drought regions.The present situation highlights the significance and urgency of developing dry beneficiation technologies of coal.Besides,other countries that produce large amounts of coal also encounter serious problem of lack of water for coal beneficiation,such as American,Australia,Canada,South Africa,Turkey and India.Thus,dry coal beneficiation becomes the research hot-points in the field of coal cleaning worldwide in recent years.This paper systematically reviewed the promising research efforts on dry coal beneficiation reported in literature in last 5 years and discussed the progress in developments of dry coal beneficiation worldwide.Finally,we also elaborated the prospects and the challenges of the development of dry coal beneficiation. 展开更多
关键词 Dry coal beneficiation air dense medium fluidized bed Density segregation Vibrated fluidized bed
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部