To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 ...To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.展开更多
This article studies the effects of air content on propeller cavitation and pressure fluctuations. The cavitation is observed while the pressure fluctuations on the hull are measured. When adjusting the air content, t...This article studies the effects of air content on propeller cavitation and pressure fluctuations. The cavitation is observed while the pressure fluctuations on the hull are measured. When adjusting the air content, the sheet cavitation range does not change distinctly, but the pressure fluctuations see obvious differences. The amplitudes of the pressure fluctuations increase with the decrease of the air content. The results indicate that the air content has little effect on the sheet cavitation range but has an important effect on the bubble cavitation and the tip vortex cavitation. When the air content decreases, the water tensile force increases, which results in the instability of the bubble cavitation and the tip vortex cavitation and the increase of the pressure fluctuations. To minimize the scale effects, the experiments should be run at a high Reynolds number with a high nuclei content. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often made by increasing the dissolved air content.展开更多
Twice investigations around Hangzhou area show that ^7Be content average in the ground air is 5.9mBq.m^-3.The content of ^7Be is the highest in autumn-winter period reaching about 7.7mBq.m^-3,the next is in spring abo...Twice investigations around Hangzhou area show that ^7Be content average in the ground air is 5.9mBq.m^-3.The content of ^7Be is the highest in autumn-winter period reaching about 7.7mBq.m^-3,the next is in spring about 6.2mBq.m^-3.then is in the early summer about 5.7mBq.m^-3,close to the annual average level;and the lowest in a year is in summer-autumm period with a value about 3.8mBq.m^-3.Exhibited is a decreasing trend from autumn-winter period to summer-autumn of the next year,which is negatively correlated with the variation of the seasonal rainfall in Hangzhou area.But this trend is different from that reported by UNSCEAR:it is the highest in spring and the lowest in the late autumn,which is based only on ^7Be falling down from the stratosphere.However,the present investigation shows that the seasonal rainfall is the main factor influencing the variation tend of ^7Be content in the air.展开更多
In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas...In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas(air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH(A;Σ;–X;Π;) and O(3p;P–3s;S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53–9.58 mg l;, depending on the gas/water mixture ratio. The production of OH(A;Σ;–X;Π;) rises with the increase of water content, whereas the O(3p;P–3s;S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air–water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH(A;Σ;–X;Π;) is a more effective species in inactivation than O(3p;P–3s;S) and the water content benefit the spore germination inhibition through rising the OH(A;Σ;–X;Π;) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l;.展开更多
木材密度包括基本密度、气干密度等,在12%含水率条件下的气干密度(D12)较常用,因此有必要将木材气干密度换算为基本密度(Db)。目前利用木材气干密度计算基本密度的模型有Reyes、Chave、Simpson和Vieilledent模型等,然而这些模型预测结...木材密度包括基本密度、气干密度等,在12%含水率条件下的气干密度(D12)较常用,因此有必要将木材气干密度换算为基本密度(Db)。目前利用木材气干密度计算基本密度的模型有Reyes、Chave、Simpson和Vieilledent模型等,然而这些模型预测结果不完全一致。利用中国林业科学研究院木材工业研究所(Research Institute of Wood Industry,Chinese Academy of Forestry,CRIWI)和法国农业国际合作研究发展中心(French Agricultural Research Centre for International Development,CIRAD)的木材D12和Db数据,首先基于CRIWI的木材密度数据建立D12与Db的关系模型,然后将CRIWI和CIRAD的D12数据分别代入Reyes模型、Chave模型、Simpson模型、Vieilledent模型和新建模型,获得每个树种木材Db的预测值,并根据Db预测值和实测值计算残差绝对值均值。不同模型残差绝对值均值比较结果表明:Reyes模型在利用CRIWI和CIRAD的木材密度数据时预测Db的准确性都比较高,适用性最广;Simpson模型、新建模型在D12高于1.0 g/cm3时预测Db的准确性降低。展开更多
花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和...花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和最优组合干燥模型,并将傅里叶准则数(F_(0))引入Fick第二扩散定律方程,求解有效水分扩散系数(D_(eff))。研究结果表明:热风和微波单独干燥时,升高风温风速和增加微波功率均有利于缩短干燥时间;热风-微波组合干燥花椒时,热风段转微波段的最佳目标含水率即为热风干燥的临界点含水率(65%(w.b)),且高热风温度和高微波功率均可使微波干燥段获得高失水速率;热风-微波组合干燥花椒热风段和微波段对应的最优模型分别为Wang and Singh模型和Page模型,D_(eff)范围分别为1.908×10^(-9)~3.547×10^(-9)m^(2)/s和1.883×10^(-8)~3.321×10^(-8)m^(2)/s。热风-微波组合干燥方式能够显著提高干燥效率,促进花椒内部水分扩散,干燥模型可为优化干燥工艺和设计干燥设备提供理论依据。展开更多
Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composit...Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composite) were studied by the air-void analyzer (AVA) method and the microscopical method. The correlations between the test results obtained from different methods were analyzed. The results show that, there is a close correlation of air content and spacing factor between the fresh concrete and the hardened concrete, but the specific surface correlation is weak. The air content of concrete measured by the AVA method is smaller than that of the pressure method and the microscopical method, because AVA device captures only the air voids with the size smaller than 3 mm. Spacing factor of the fresh concrete measured by the AVA method is greater than that of the hardened concrete measured by the microscopical method, while the specific surface is smaller. When the criterion of 4%-7% air content measured by the pressure method and microscopical method is acceptable for concrete freezing-thawing (F-T) durability in cold weather, the air content measured by the AVA method should be 2.4%-4.6%. For the concrete F-T durability, when the criterion of the spacing factor measured by the microscopical method is 300 μm, the spacing factor measured by the AVA method should be 360 μm.展开更多
To explore the method to evaluate air-void parameters of fresh concrete rapidly, the spacing factor and specific surface of freshly mixed concrete of different air contents, different slumps and different mineral admi...To explore the method to evaluate air-void parameters of fresh concrete rapidly, the spacing factor and specific surface of freshly mixed concrete of different air contents, different slumps and different mineral admixtures (fly ash, fly ash-slag, fly ash-slag-silica fume composite) are studied by air-void analyzer (AVA), and the correlation between the air content measured by AVA and air content determinator is compared. The results show that the spacing factor of the fresh concrete decreases firstly and then increases with the increase of air content, however the specific surface has the opposite rule. When the air content is more than 8%, the spacing factor of fresh concrete increases and the specific surface decreases. For the fresh concrete samples with similar air content, the specific surface increases firstly and then decreases with the increase of slump, but the spacing factor decreases firstly and then increases. Mineral admixalre can reduce the spacing factor of fresh concrete and increase the specific surface to some degree. There is a good correlation between the air content measured by two methods, and the air content measured by AVA is about 70% of the air content measured by the air content determinator.展开更多
基金Funed by the National Key R&D Program of China(No.2017YFB0309903)
文摘To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.
基金Project supported by the Foundation of the State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University (Grant No. 0811)the National Natural Science Foundation of China (Grant No. 51009145)the Foundation of Ministry of Education Key Laboratory of High speed ship Engineering, Wuhan University of Technology (Grant No. HSSE 1004)
文摘This article studies the effects of air content on propeller cavitation and pressure fluctuations. The cavitation is observed while the pressure fluctuations on the hull are measured. When adjusting the air content, the sheet cavitation range does not change distinctly, but the pressure fluctuations see obvious differences. The amplitudes of the pressure fluctuations increase with the decrease of the air content. The results indicate that the air content has little effect on the sheet cavitation range but has an important effect on the bubble cavitation and the tip vortex cavitation. When the air content decreases, the water tensile force increases, which results in the instability of the bubble cavitation and the tip vortex cavitation and the increase of the pressure fluctuations. To minimize the scale effects, the experiments should be run at a high Reynolds number with a high nuclei content. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often made by increasing the dissolved air content.
文摘Twice investigations around Hangzhou area show that ^7Be content average in the ground air is 5.9mBq.m^-3.The content of ^7Be is the highest in autumn-winter period reaching about 7.7mBq.m^-3,the next is in spring about 6.2mBq.m^-3.then is in the early summer about 5.7mBq.m^-3,close to the annual average level;and the lowest in a year is in summer-autumm period with a value about 3.8mBq.m^-3.Exhibited is a decreasing trend from autumn-winter period to summer-autumn of the next year,which is negatively correlated with the variation of the seasonal rainfall in Hangzhou area.But this trend is different from that reported by UNSCEAR:it is the highest in spring and the lowest in the late autumn,which is based only on ^7Be falling down from the stratosphere.However,the present investigation shows that the seasonal rainfall is the main factor influencing the variation tend of ^7Be content in the air.
基金supported by National Natural Science Foundation of China (NSFC) under Grants No. 51407020National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grants No. 2014BAC13B05Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University) No. 2007DA10512716404
文摘In order to investigate whether an air–water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas(air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH(A;Σ;–X;Π;) and O(3p;P–3s;S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53–9.58 mg l;, depending on the gas/water mixture ratio. The production of OH(A;Σ;–X;Π;) rises with the increase of water content, whereas the O(3p;P–3s;S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air–water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH(A;Σ;–X;Π;) is a more effective species in inactivation than O(3p;P–3s;S) and the water content benefit the spore germination inhibition through rising the OH(A;Σ;–X;Π;) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l;.
文摘木材密度包括基本密度、气干密度等,在12%含水率条件下的气干密度(D12)较常用,因此有必要将木材气干密度换算为基本密度(Db)。目前利用木材气干密度计算基本密度的模型有Reyes、Chave、Simpson和Vieilledent模型等,然而这些模型预测结果不完全一致。利用中国林业科学研究院木材工业研究所(Research Institute of Wood Industry,Chinese Academy of Forestry,CRIWI)和法国农业国际合作研究发展中心(French Agricultural Research Centre for International Development,CIRAD)的木材D12和Db数据,首先基于CRIWI的木材密度数据建立D12与Db的关系模型,然后将CRIWI和CIRAD的D12数据分别代入Reyes模型、Chave模型、Simpson模型、Vieilledent模型和新建模型,获得每个树种木材Db的预测值,并根据Db预测值和实测值计算残差绝对值均值。不同模型残差绝对值均值比较结果表明:Reyes模型在利用CRIWI和CIRAD的木材密度数据时预测Db的准确性都比较高,适用性最广;Simpson模型、新建模型在D12高于1.0 g/cm3时预测Db的准确性降低。
文摘花椒热风干燥降速期水分含量低,水分扩散慢,导致热风干燥耗时长。为提高干燥效率,并通过热风与微波组合干燥,分别进行热风干燥、微波干燥和热风-微波组合干燥实验,探究不同干燥参数对花椒失水特性的影响,以确定合理的干燥转换临界点和最优组合干燥模型,并将傅里叶准则数(F_(0))引入Fick第二扩散定律方程,求解有效水分扩散系数(D_(eff))。研究结果表明:热风和微波单独干燥时,升高风温风速和增加微波功率均有利于缩短干燥时间;热风-微波组合干燥花椒时,热风段转微波段的最佳目标含水率即为热风干燥的临界点含水率(65%(w.b)),且高热风温度和高微波功率均可使微波干燥段获得高失水速率;热风-微波组合干燥花椒热风段和微波段对应的最优模型分别为Wang and Singh模型和Page模型,D_(eff)范围分别为1.908×10^(-9)~3.547×10^(-9)m^(2)/s和1.883×10^(-8)~3.321×10^(-8)m^(2)/s。热风-微波组合干燥方式能够显著提高干燥效率,促进花椒内部水分扩散,干燥模型可为优化干燥工艺和设计干燥设备提供理论依据。
基金Project(50908229) supported by the National Natural Science Foundation of ChinaProjects(2008G031-N, 50908229, 10125C131) supported by Technological Research and Development Programs of the Ministry of Railways, China
文摘Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composite) were studied by the air-void analyzer (AVA) method and the microscopical method. The correlations between the test results obtained from different methods were analyzed. The results show that, there is a close correlation of air content and spacing factor between the fresh concrete and the hardened concrete, but the specific surface correlation is weak. The air content of concrete measured by the AVA method is smaller than that of the pressure method and the microscopical method, because AVA device captures only the air voids with the size smaller than 3 mm. Spacing factor of the fresh concrete measured by the AVA method is greater than that of the hardened concrete measured by the microscopical method, while the specific surface is smaller. When the criterion of 4%-7% air content measured by the pressure method and microscopical method is acceptable for concrete freezing-thawing (F-T) durability in cold weather, the air content measured by the AVA method should be 2.4%-4.6%. For the concrete F-T durability, when the criterion of the spacing factor measured by the microscopical method is 300 μm, the spacing factor measured by the AVA method should be 360 μm.
基金Supported by National Natural Science Foundation of China(No.50908229)and the Technological Research and Development Programs of the Ministry of Railways(No.2008G031-N. 2010G004-E)
文摘To explore the method to evaluate air-void parameters of fresh concrete rapidly, the spacing factor and specific surface of freshly mixed concrete of different air contents, different slumps and different mineral admixtures (fly ash, fly ash-slag, fly ash-slag-silica fume composite) are studied by air-void analyzer (AVA), and the correlation between the air content measured by AVA and air content determinator is compared. The results show that the spacing factor of the fresh concrete decreases firstly and then increases with the increase of air content, however the specific surface has the opposite rule. When the air content is more than 8%, the spacing factor of fresh concrete increases and the specific surface decreases. For the fresh concrete samples with similar air content, the specific surface increases firstly and then decreases with the increase of slump, but the spacing factor decreases firstly and then increases. Mineral admixalre can reduce the spacing factor of fresh concrete and increase the specific surface to some degree. There is a good correlation between the air content measured by two methods, and the air content measured by AVA is about 70% of the air content measured by the air content determinator.