When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop thr...When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.展开更多
This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory an...This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory and simulation analysis. The test results presented show that the DCCB meets the requirements for quenching protection. It will be used as the main breaker for quench protection in EAST.展开更多
The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents ...The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.展开更多
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协...直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。展开更多
为解决船舶中压直流(medium voltage direct current,MVDC)电力系统直流电流开断困难,以及发生短路时故障电流上升率高且峰值大的问题,提出一种基于耦合电抗器的阻容限流型固态直流断路器拓扑。以晶闸管(silicon controlled rectifier,S...为解决船舶中压直流(medium voltage direct current,MVDC)电力系统直流电流开断困难,以及发生短路时故障电流上升率高且峰值大的问题,提出一种基于耦合电抗器的阻容限流型固态直流断路器拓扑。以晶闸管(silicon controlled rectifier,SCR)作为主开断器件,通过耦合电抗器来辅助晶闸管开断,并在直流系统发生故障时,通过换流过程将阻容限流元件接入,有效限制故障电流上升率和峰值,减少故障开断所需时间。基于所提拓扑设计了6 kV/4.2 kA的直流断路器模型,在PSCAD/EMTDC中进行仿真,并与现有拓扑进行对比分析。仿真结果表明:所设计断路器可针对直流系统不同的运行状态,按照不同的控制策略顺利完成对直流电流的开断,并且在开断速度、限流能力和金属氧化物避雷器(metal oxide arrester,MOA)耗能方面均具有一定优势。展开更多
The high-voltage direct current(HVDC)circuit breaker is becoming popular with the rapid development of the flexible HVDC grid for efficient DC fault ride-through purposes.This paper proposes a novel module for recipro...The high-voltage direct current(HVDC)circuit breaker is becoming popular with the rapid development of the flexible HVDC grid for efficient DC fault ride-through purposes.This paper proposes a novel module for reciprocating HVDC circuit breaker topology,whose branch connections are able to switch between series and parallel modes to limit the rising rate and interrupt the DC fault currents.Diode-bridge submodules(DBSMs)are used to compose the main branch for current interruption.Besides fault clearance,the proposed topology has the advantageous function of DC fault current limiting by employing DBSMs with bi-directional conduction capability.The topology can easily switch among branch connection modes through the assembled trans-valves,and their resistance and reactance are very small in the normal state when branches are in parallel and the values become promptly large in the transient state when the branches are series connected.With the modular design,it is easy to change the number of branches or sub-modules and the types of sub-modules to adapt to more specific needs.A 6-terminal modular multi-level converter(MMC)based HVDC grid is established in PSCAD/EMTDC,and various simulation scenarios are carried out to validate the proposed topology.展开更多
High voltage direct current(HVDC)systems are efficient solutions for the integration of large-scale renewable energy sources with the main power grids.The rapid development of the HVDC grid has resulted in a growing i...High voltage direct current(HVDC)systems are efficient solutions for the integration of large-scale renewable energy sources with the main power grids.The rapid development of the HVDC grid has resulted in a growing interest in DC circuit breakers(DCCBs).A fast and reliable circuit breaker is a necessary requirement in the development of large scale HVDC grids.This paper provides a comprehensive review and survey of the HVDC CBs and discusses potential research directions.Operational principles and the main features of various DCCBs are described and their merits and shortcomings are also highlighted.展开更多
High voltage DC grids are developing in more terminals and with larger transmission capacity,thus the re-quirements for DC circuit breakers(DCCB)will continue to rise.Conventional methods only use the faulty line DCCB...High voltage DC grids are developing in more terminals and with larger transmission capacity,thus the re-quirements for DC circuit breakers(DCCB)will continue to rise.Conventional methods only use the faulty line DCCB to withstand the fault stress,and therefore this paper presents a coordination method of multiple DCCBs to protect the system.As many adjacent DCCBs are tripped to interrupt the fault current,the fault energy is shared,and the requirement for the faulty line DCCB is reduced.Moreover,the adjacent DCCBs are actively controlled to help system recovery.The primary protection,backup protection,and reclosing logic of multiple DCCBs are studied.Simulations confirm that the proposed control reduces the energy dissipation requirement of faulty line DCCB by approximately 30%-42%,the required current rating for IGBTs is reduced,and the system recovery time is also reduced by 20-40 ms.展开更多
高压直流断路器(Direct Current Circuit Breaker,DCCB)需承载直流线路正常工作时的工作电流,且需在规定时间内接通分断直流线路正常工作时的电流,以及分断直流线路短路故障电流。高压DCCB是确保高压直流输配电网安全、可靠运行的基础...高压直流断路器(Direct Current Circuit Breaker,DCCB)需承载直流线路正常工作时的工作电流,且需在规定时间内接通分断直流线路正常工作时的电流,以及分断直流线路短路故障电流。高压DCCB是确保高压直流输配电网安全、可靠运行的基础。混合式高压DCCB既具备机械式高压DCCB的优点,也具备固态高压DCCB的优点。在分析了各类混合式高压DCCB的拓扑、工作原理基础上,总结了混合式高压DCCB的设计关键技术,如电弧数学模型、串联均压、并联均流等问题。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.51977132)Key Special Science and Technology Project of Liaoning Province (Grant No.2020JH1/10100012)General Program of the Education Department of Liaoning Province (Grant No.LJKZ0126)。
文摘When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.
基金supported by the National Meg-Science Project of the Chinese Government
文摘This paper introduces the configuration and the operation principles of a high power direct current circuit breaker (DCCB). The commutating current principle of the breaker is described in details with its theory and simulation analysis. The test results presented show that the DCCB meets the requirements for quenching protection. It will be used as the main breaker for quench protection in EAST.
基金supported by National Natural Science Foundation of China(No.51977132)the Key Special Science and Technology Project of Liaoning Province(No.2020JH1/10100012)the General Program of the Education Department of Liaoning Province(No.LJKZ0126).
文摘The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.
文摘直流系统的故障隔离是保证直流系统稳定运行的重要技术。针对传统故障隔离策略对直流断路器(direct current circuit breaker, DCCB)的性能要求较高的问题,提出了一种利用柔性限流装置(flexible current limiting device,FCLD)与DCCB协同动作的故障隔离策略。首先,研究了直流系统永久性故障和瞬时性故障情况下FCLD与DCCB的协同作用机理。其次,分析考虑FCLD电流抑制作用下DCCB开断过程的电弧暂态特性。最后,在Matlab/Simulink平台中进行仿真,验证所提协同策略的可行性。结果表明:FCLD可有效抑制DCCB的开断电弧;基于所提故障隔离策略,直流系统可在瞬时故障情况下实现平稳穿越,永久故障情况下实现DCCB的无弧开断。该策略降低了直流系统故障隔离过程中对DCCB的开断要求,提升了直流系统的故障穿越能力。
文摘为解决船舶中压直流(medium voltage direct current,MVDC)电力系统直流电流开断困难,以及发生短路时故障电流上升率高且峰值大的问题,提出一种基于耦合电抗器的阻容限流型固态直流断路器拓扑。以晶闸管(silicon controlled rectifier,SCR)作为主开断器件,通过耦合电抗器来辅助晶闸管开断,并在直流系统发生故障时,通过换流过程将阻容限流元件接入,有效限制故障电流上升率和峰值,减少故障开断所需时间。基于所提拓扑设计了6 kV/4.2 kA的直流断路器模型,在PSCAD/EMTDC中进行仿真,并与现有拓扑进行对比分析。仿真结果表明:所设计断路器可针对直流系统不同的运行状态,按照不同的控制策略顺利完成对直流电流的开断,并且在开断速度、限流能力和金属氧化物避雷器(metal oxide arrester,MOA)耗能方面均具有一定优势。
基金supported by the National Key R&D Program of China(No.2018YFB0904600)the National Natural Science Foundation of China(No.51777072)
文摘The high-voltage direct current(HVDC)circuit breaker is becoming popular with the rapid development of the flexible HVDC grid for efficient DC fault ride-through purposes.This paper proposes a novel module for reciprocating HVDC circuit breaker topology,whose branch connections are able to switch between series and parallel modes to limit the rising rate and interrupt the DC fault currents.Diode-bridge submodules(DBSMs)are used to compose the main branch for current interruption.Besides fault clearance,the proposed topology has the advantageous function of DC fault current limiting by employing DBSMs with bi-directional conduction capability.The topology can easily switch among branch connection modes through the assembled trans-valves,and their resistance and reactance are very small in the normal state when branches are in parallel and the values become promptly large in the transient state when the branches are series connected.With the modular design,it is easy to change the number of branches or sub-modules and the types of sub-modules to adapt to more specific needs.A 6-terminal modular multi-level converter(MMC)based HVDC grid is established in PSCAD/EMTDC,and various simulation scenarios are carried out to validate the proposed topology.
文摘High voltage direct current(HVDC)systems are efficient solutions for the integration of large-scale renewable energy sources with the main power grids.The rapid development of the HVDC grid has resulted in a growing interest in DC circuit breakers(DCCBs).A fast and reliable circuit breaker is a necessary requirement in the development of large scale HVDC grids.This paper provides a comprehensive review and survey of the HVDC CBs and discusses potential research directions.Operational principles and the main features of various DCCBs are described and their merits and shortcomings are also highlighted.
基金the National Key R&D Program of China(Grant No.2018YFB0904600)the National Natural Science Foundation of China(Grant No.51777072)。
文摘High voltage DC grids are developing in more terminals and with larger transmission capacity,thus the re-quirements for DC circuit breakers(DCCB)will continue to rise.Conventional methods only use the faulty line DCCB to withstand the fault stress,and therefore this paper presents a coordination method of multiple DCCBs to protect the system.As many adjacent DCCBs are tripped to interrupt the fault current,the fault energy is shared,and the requirement for the faulty line DCCB is reduced.Moreover,the adjacent DCCBs are actively controlled to help system recovery.The primary protection,backup protection,and reclosing logic of multiple DCCBs are studied.Simulations confirm that the proposed control reduces the energy dissipation requirement of faulty line DCCB by approximately 30%-42%,the required current rating for IGBTs is reduced,and the system recovery time is also reduced by 20-40 ms.
文摘高压直流断路器(Direct Current Circuit Breaker,DCCB)需承载直流线路正常工作时的工作电流,且需在规定时间内接通分断直流线路正常工作时的电流,以及分断直流线路短路故障电流。高压DCCB是确保高压直流输配电网安全、可靠运行的基础。混合式高压DCCB既具备机械式高压DCCB的优点,也具备固态高压DCCB的优点。在分析了各类混合式高压DCCB的拓扑、工作原理基础上,总结了混合式高压DCCB的设计关键技术,如电弧数学模型、串联均压、并联均流等问题。