Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement...Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement using ionization chamber is a prerequisite for absorbed dose determination for external beam radiotherapy. Calibration coefficient is expressed in terms of air kerma and absorbed dose to water traceable to Secondary Standards Dosimetry Laboratory. The objective of this work was to evaluate the level of accuracy of ionization chamber used for clinical radiotherapy beam determination. Measurement and accuracy determination were carried out according to IAEA TRS 398 protocol. Clinical farmers type ionization chamber measurement and National Reference standard from Secondary Standards Dosimetry Laboratory were both exposed to cobalt-60 beam and measurement results compared under the same environmental conditions. The accuracy level between National Reference Standard and clinical radiotherapy standard was found to be −1.92% and −2.02% for air kerma and absorbed dose to water respectively. To minimize the effect of error and maximize therapeutic dose during treatment in order to achieve required clinical outcome, calibration factor was determined for air kerma (Nk) as 49.7 mGy/nC and absorbed dose to water ND, as 52.9 mGy/nC. The study established that radiotherapy beam measurement chain is prone to errors. Hence there is a need to independently verify the accuracy of radiation dose to ensure precision of dose delivery. The errors must be accounted for during clinical planning by factoring in calibration factor to minimize the systematic errors during treatment, and thereby providing enough room to achieve ±5% dose delivery to tumor target as recommended by ICRU.展开更多
Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation dete...Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide(LaBr_3(Ce)), thallium doped with cesium iodide(sI(Tl)), thallium doped with sodium iodide(NaI(Tl)),and high-purity germanium(HPGe) primarily use the spectroscopy-dose rate function(G(E)) to achieve the accurate measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.展开更多
Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable gro...Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable ground truth areas, which reflected the ability of remote sensing data in mapping poorly-accessed and remote regions such as playa (Sabkha) environs, subdued topography and sand dunes. Ground gamma-ray spectrometric survey was to delineate radioactive anomalies within Quaternary sediments at Wadi Diit. The mean absorbed dose rate (D), annual effective dose equivalent (AEDE) and external hazard index (H<sub>ex</sub>) were found to be within the average worldwide ranges. Therefore, Wadi Diit environment is said to be radiological hazard safe except at the black-sand lens whose absorbed dose rate of 100.77 nGy/h exceeds the world average. So, the inhabitants will receive a relatively high radioactive dose generated mainly by monazite and zircon minerals from black-sand lens.展开更多
A simulation study has been performed to quantify the effect of volume reduction on the thyroid absorbed dose per decay and to investigate the variation of energy deposition per decay due to β- and γ-activity of 131...A simulation study has been performed to quantify the effect of volume reduction on the thyroid absorbed dose per decay and to investigate the variation of energy deposition per decay due to β- and γ-activity of 131I with volume/mass of thyroid, for water, ICRP- and ICRU-soft tissue taken as thyroid material. A Monte Carlo model of the thyroid, in the Geant4 radiation transport simulation toolkit was constructed to compute the β- and γ-absorbed dose in the simulated thyroid phantom for various values of its volume. The effect of the size and shape of the thyroid on energy deposition per decay has also been studied by using spherical, ellipsoidal and cylindrical models for the thyroid and varying its volume in 1-25 cm3 range. The relative differences of Geant4 results for different models with each other and MCNP results lie well below 1.870%. The maximum relative difference among the Geant4 estimated results for water with ICRP and ICRU soft tissues is not more than 0.225%. S-values for ellipsoidal, spherical and cylindrical thyroid models were estimated and the relative difference with published results lies within 3.095%. The absorbed fraction values for beta particles show a good agreement with published values within 2.105% deviation. The Geant4 based simulation results of absorbed fractions for gammas again show a good agreement with the corresponding MCNP and EGS4 results (±6.667%) but have 29.032% higher values than that of MIRD calculated values. Consistent with previous studies, the reduction of the thyroid volume is found to have a substantial effect on the absorbed dose. Geant4 simulations confirm dose dependence on the volume/mass of thyroid in agreement with MCNP and EGS4 computed values but are substantially different from MIRD8 data. Therefore, inclusion of size/mass dependence is indicated for 131I radiotherapy of the thyroid.展开更多
The aim of this study is to compare the absorbed doses of critical organs of 131I using the MIRD (Medical Internal Radiation Dose) with the corresponding predictions made by GEANT4 simulations. S- values (mean abso...The aim of this study is to compare the absorbed doses of critical organs of 131I using the MIRD (Medical Internal Radiation Dose) with the corresponding predictions made by GEANT4 simulations. S- values (mean absorbed dose rate per unit activity) and energy deposition per decay for critical organs of 131I for various ages, using standard cylindrical phantom comprising water and ICRP soft-tissue material, have also been estimated. In this study the effect of volume reduction of thyroid, during radiation therapy, on the calculation of absorbed dose is also being estimated using GEANT4. Photon specific energy deposition in the other organs of the neck, due to 131I decay in the thyroid organ, has also been estimated. The maximum relative difference of MIRD with the GEANT4 simulated results is 5.64% for an adult's critical organs of 131I. Excellent agreement was found between the results of water and ICRP soft tissue using the cylindrical model. S-values are tabulated for critical organs of 131I, using 1, 5, 10, 15 and 18 years (adults) individuals. S-values for a cylindrical thyroid of different sizes, having 3.07% relative differences of GEANT4 with Siegel & Stabin results. Comparison of the experimentally measured values at 0.5 and 1 m away from neck of the ionization chamber with GEANT4 based Monte Carlo simulations results show good agreement. This study shows that GEANT4 code is an important tool for the internal dosimetry calculations.展开更多
文摘Radiotherapy is the most widely applied oncologic treatment modality utilizing ionizing radiation. A high degree of accuracy, reliability and reproducibility is required for a successful treatment outcome. Measurement using ionization chamber is a prerequisite for absorbed dose determination for external beam radiotherapy. Calibration coefficient is expressed in terms of air kerma and absorbed dose to water traceable to Secondary Standards Dosimetry Laboratory. The objective of this work was to evaluate the level of accuracy of ionization chamber used for clinical radiotherapy beam determination. Measurement and accuracy determination were carried out according to IAEA TRS 398 protocol. Clinical farmers type ionization chamber measurement and National Reference standard from Secondary Standards Dosimetry Laboratory were both exposed to cobalt-60 beam and measurement results compared under the same environmental conditions. The accuracy level between National Reference Standard and clinical radiotherapy standard was found to be −1.92% and −2.02% for air kerma and absorbed dose to water respectively. To minimize the effect of error and maximize therapeutic dose during treatment in order to achieve required clinical outcome, calibration factor was determined for air kerma (Nk) as 49.7 mGy/nC and absorbed dose to water ND, as 52.9 mGy/nC. The study established that radiotherapy beam measurement chain is prone to errors. Hence there is a need to independently verify the accuracy of radiation dose to ensure precision of dose delivery. The errors must be accounted for during clinical planning by factoring in calibration factor to minimize the systematic errors during treatment, and thereby providing enough room to achieve ±5% dose delivery to tumor target as recommended by ICRU.
基金supported by the National Key Scientific Instruments to Develop Dedicated(Nos.2013YQ090811 and 2016YFF0103800)
文摘Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide(LaBr_3(Ce)), thallium doped with cesium iodide(sI(Tl)), thallium doped with sodium iodide(NaI(Tl)),and high-purity germanium(HPGe) primarily use the spectroscopy-dose rate function(G(E)) to achieve the accurate measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.
文摘Maximum Likelihood (MLH) supervised classification of atmospherically corrected Landsat 8 imagery was applied successfully for delineating main geologic units with a good accuracy (about 90%) according to reliable ground truth areas, which reflected the ability of remote sensing data in mapping poorly-accessed and remote regions such as playa (Sabkha) environs, subdued topography and sand dunes. Ground gamma-ray spectrometric survey was to delineate radioactive anomalies within Quaternary sediments at Wadi Diit. The mean absorbed dose rate (D), annual effective dose equivalent (AEDE) and external hazard index (H<sub>ex</sub>) were found to be within the average worldwide ranges. Therefore, Wadi Diit environment is said to be radiological hazard safe except at the black-sand lens whose absorbed dose rate of 100.77 nGy/h exceeds the world average. So, the inhabitants will receive a relatively high radioactive dose generated mainly by monazite and zircon minerals from black-sand lens.
文摘A simulation study has been performed to quantify the effect of volume reduction on the thyroid absorbed dose per decay and to investigate the variation of energy deposition per decay due to β- and γ-activity of 131I with volume/mass of thyroid, for water, ICRP- and ICRU-soft tissue taken as thyroid material. A Monte Carlo model of the thyroid, in the Geant4 radiation transport simulation toolkit was constructed to compute the β- and γ-absorbed dose in the simulated thyroid phantom for various values of its volume. The effect of the size and shape of the thyroid on energy deposition per decay has also been studied by using spherical, ellipsoidal and cylindrical models for the thyroid and varying its volume in 1-25 cm3 range. The relative differences of Geant4 results for different models with each other and MCNP results lie well below 1.870%. The maximum relative difference among the Geant4 estimated results for water with ICRP and ICRU soft tissues is not more than 0.225%. S-values for ellipsoidal, spherical and cylindrical thyroid models were estimated and the relative difference with published results lies within 3.095%. The absorbed fraction values for beta particles show a good agreement with published values within 2.105% deviation. The Geant4 based simulation results of absorbed fractions for gammas again show a good agreement with the corresponding MCNP and EGS4 results (±6.667%) but have 29.032% higher values than that of MIRD calculated values. Consistent with previous studies, the reduction of the thyroid volume is found to have a substantial effect on the absorbed dose. Geant4 simulations confirm dose dependence on the volume/mass of thyroid in agreement with MCNP and EGS4 computed values but are substantially different from MIRD8 data. Therefore, inclusion of size/mass dependence is indicated for 131I radiotherapy of the thyroid.
文摘The aim of this study is to compare the absorbed doses of critical organs of 131I using the MIRD (Medical Internal Radiation Dose) with the corresponding predictions made by GEANT4 simulations. S- values (mean absorbed dose rate per unit activity) and energy deposition per decay for critical organs of 131I for various ages, using standard cylindrical phantom comprising water and ICRP soft-tissue material, have also been estimated. In this study the effect of volume reduction of thyroid, during radiation therapy, on the calculation of absorbed dose is also being estimated using GEANT4. Photon specific energy deposition in the other organs of the neck, due to 131I decay in the thyroid organ, has also been estimated. The maximum relative difference of MIRD with the GEANT4 simulated results is 5.64% for an adult's critical organs of 131I. Excellent agreement was found between the results of water and ICRP soft tissue using the cylindrical model. S-values are tabulated for critical organs of 131I, using 1, 5, 10, 15 and 18 years (adults) individuals. S-values for a cylindrical thyroid of different sizes, having 3.07% relative differences of GEANT4 with Siegel & Stabin results. Comparison of the experimentally measured values at 0.5 and 1 m away from neck of the ionization chamber with GEANT4 based Monte Carlo simulations results show good agreement. This study shows that GEANT4 code is an important tool for the internal dosimetry calculations.