Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressibl...Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
Classic respiratory mechanics is a branch of vectorial mechanics, which aims to recognize all forces acting on the respiratory system. Another branch of mechanics, analytical mechanics, has been used for analyzing the...Classic respiratory mechanics is a branch of vectorial mechanics, which aims to recognize all forces acting on the respiratory system. Another branch of mechanics, analytical mechanics, has been used for analyzing the motions of complicated systems with constraints through equilibrium among scalar quantities such as kinetic energy and potential energy. However, until now, there have not been any studies concerning about analytical respiratory mechanics. In this paper, the author has obtained two types of motion equations (linear and nonlinear) for the airflow limitation from formulation of the analytical respiratory mechanics. Reconstructed flow-volume trajectories of the linear equation revealed a new relationship among the slope of the linear portion of trajectory, the coefficient of the dissipation function and the coefficient of the potential function. Reconstructed trajectories of the nonlinear equation suggested that a curved flow-volume trajectory would be caused by the emergence of regional hypoventilated clusters with airtrapped lobules. In conclusion, analytical respiratory mechanics will provide the basis for analyzing the mechanical properties of the respiratory system con cerning pulmonary functional images made by newly developed technologies.展开更多
With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are inve...With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are investigated with the Maxwell stress tensor method. Accurate results can easily be achieved using the proposed method without using the tedious finite element analysis (FEA). In this paper, the electromagnetic torque of a surface mounted PM motor with two phases energized is decomposed into four torque components. This technique is useful not only for the design and optimization of the permanent magnet motor, but also for the choice of control strategy.展开更多
This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the ...This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensional consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soil from an- alytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct.展开更多
In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By app...In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By applying the Laplace transform and the Cayley-Hamilton theorem to the simplified governing equations of water and air, Darcy's law, and Fick's law, the transfer function between the state vectors at top and at any depth is then constructed. Finally, by the boundary conditions, the excess pore-water pressure, the excess pore-air pressure, and the soil settlement are obtained under several kinds of boundary conditions with the large-area uniform instantaneous loading. By the Crump method, the inverse Laplace transform is performed, and the semi-analytical solutions to the excess pore-water pressure, the excess pore-air pressure, and the soils settlement are obtained in the time domain. In the case of one surface which is permeable to air and water, comparisons between the semi-analytical solutions and the analytical solutions indicate that the semi-analytical solutions are correct. In the case of one surface which is permeable to air but impermeable to water, comparisons between the semi-analytical solutions and the results of the finite difference method are made, indicating that the semi-analytical solution is also correct.展开更多
Vortices that develop over intakes are a hazardous hydraulic phenomenon.In this study, a 3D model was developed to study the flow field in air-core vortices.This model is based on the spiral pattern of streamlines and...Vortices that develop over intakes are a hazardous hydraulic phenomenon.In this study, a 3D model was developed to study the flow field in air-core vortices.This model is based on the spiral pattern of streamlines and the analytical solution of the momentum and continuity equations for deriving the three components of velocity.The model provides equations for free surface profiles and 3D patterns of the streamlines.Moreover, a new relationship was suggested for calculating effective viscosity and its distribution across the vortex flow field.The performance of the proposed analytical model was compared with existing experimental data and the results of previous analytical models.The outcomes indicated that the proposed model could predict characteristics of the vortex flow with good accuracy.展开更多
In this work we present the solution of the two-dimensional advection-diffusion equation by the GILTT method. The GILTT approach uses, in the series expansion, eigenfunctions given in terms of cosine functions. Here, ...In this work we present the solution of the two-dimensional advection-diffusion equation by the GILTT method. The GILTT approach uses, in the series expansion, eigenfunctions given in terms of cosine functions. Here, a different expansion for the solution of the advection-diffusion equation will be explored. In other words, a Sturm-Liouville problem carrying more information of the original problem is considered, given by Bessel functions. Numerical simulations and comparisons with experimental data are presented.展开更多
This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Vi...This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Visual analytics were used to examine the impact of various climate change indicators on different aspects of human development. The study highlights the urgent need for climate change action and encourages policymakers to make decisive moves. Climate change adversely affects numerous aspects of daily life, leading to significant consequences that must be addressed through policy changes and global governance recommendations. Key findings include that regions with higher CO2 emissions experience a significantly higher incidence of life-threatening diseases compared to regions with lower emissions. Additionally, higher CO2 emissions correlate with consistent death rates. Increased pollution exposure is associated with a higher prevalence of life-threatening diseases and higher rates of malnutrition. Moreover, greater mineral depletion is linked to more frequent life-threatening diseases, suggesting that industrialization contributes to adverse health effects. These results provide valuable insights for policy and decision-making aimed at mitigating the impact of climate change on human development.展开更多
Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many ...Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.展开更多
To design and check the strength of the Z-type guide arm of interconnected air suspensions for semi-trailers rapidly and effectively,this paper proposes the analytical calculation methods of its deformation and stre...To design and check the strength of the Z-type guide arm of interconnected air suspensions for semi-trailers rapidly and effectively,this paper proposes the analytical calculation methods of its deformation and stress.First,based on the guide arm structure,it is marked as two parts by its mountpoint on the axle as the boundary.The part containing the eye was marked as Arm-1.The other part was marked as Arm-2.Then the analytical formulas of their stiffness and stress were derived,respectively.With a case study,the deformation and the stress were computed and simulated.The results show that the values computed are close to those simulated.The relative deviations are not more than 5.0%.The results show that the analytical formulas are acceptable.Moreover,it can be seen that for the superimposed Arm-1,when the other structural parameters are fixed,the position of the maximum stress is affected by the thickness ratio of the end thickness to the root thickness for each piece.Finally,a stiffness test was performed on the Z-type guide arm.The results show that the computed stiffness values are closed to those tested and the relative deviations are not more than 3.5%.This further verified the validity of the established model and methods.展开更多
文摘Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
文摘Classic respiratory mechanics is a branch of vectorial mechanics, which aims to recognize all forces acting on the respiratory system. Another branch of mechanics, analytical mechanics, has been used for analyzing the motions of complicated systems with constraints through equilibrium among scalar quantities such as kinetic energy and potential energy. However, until now, there have not been any studies concerning about analytical respiratory mechanics. In this paper, the author has obtained two types of motion equations (linear and nonlinear) for the airflow limitation from formulation of the analytical respiratory mechanics. Reconstructed flow-volume trajectories of the linear equation revealed a new relationship among the slope of the linear portion of trajectory, the coefficient of the dissipation function and the coefficient of the potential function. Reconstructed trajectories of the nonlinear equation suggested that a curved flow-volume trajectory would be caused by the emergence of regional hypoventilated clusters with airtrapped lobules. In conclusion, analytical respiratory mechanics will provide the basis for analyzing the mechanical properties of the respiratory system con cerning pulmonary functional images made by newly developed technologies.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No.04AB30)
文摘With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are investigated with the Maxwell stress tensor method. Accurate results can easily be achieved using the proposed method without using the tedious finite element analysis (FEA). In this paper, the electromagnetic torque of a surface mounted PM motor with two phases energized is decomposed into four torque components. This technique is useful not only for the design and optimization of the permanent magnet motor, but also for the choice of control strategy.
文摘This paper presents an analytical solution of the one-dimensional consolidation in unsaturated soil with a finite thickness under vertical loading and confinements in the lateral directions. The boundary contains the top surface permeable to water and air and the bottom impermeable to water and air. The analytical solution is for Fredlund's one-dimensional consolidation equation in unsaturated soils. The transfer relationship between the state vectors at top surface and any depth is obtained by using the Laplace transform and Cayley-Hamilton mathematical methods to the governing equations of water and air, Darcy's law and Fick's law. Excess pore-air pressure, excess pore-water pressure and settlement in the Laplace-transformed domain are obtained by using the Laplace transform with the initial conditions and boundary conditions. By performing inverse Laplace transforms, the analytical solutions are obtained in the time domain. A typical example illustrates the consolidation characteristics of unsaturated soil from an- alytical results. Finally, comparisons between the analytical solutions and results of the finite difference method indicate that the analytical solution is correct.
文摘In this paper, a series of semi-analytical solutions to one-dimensional consolidation in unsaturated soils are obtained. The air governing equation by Fredlund for unsaturated soils consolidation is simplified. By applying the Laplace transform and the Cayley-Hamilton theorem to the simplified governing equations of water and air, Darcy's law, and Fick's law, the transfer function between the state vectors at top and at any depth is then constructed. Finally, by the boundary conditions, the excess pore-water pressure, the excess pore-air pressure, and the soil settlement are obtained under several kinds of boundary conditions with the large-area uniform instantaneous loading. By the Crump method, the inverse Laplace transform is performed, and the semi-analytical solutions to the excess pore-water pressure, the excess pore-air pressure, and the soils settlement are obtained in the time domain. In the case of one surface which is permeable to air and water, comparisons between the semi-analytical solutions and the analytical solutions indicate that the semi-analytical solutions are correct. In the case of one surface which is permeable to air but impermeable to water, comparisons between the semi-analytical solutions and the results of the finite difference method are made, indicating that the semi-analytical solution is also correct.
基金supported by the Iran National Science Foundation(INSF,Grant No.97008045)
文摘Vortices that develop over intakes are a hazardous hydraulic phenomenon.In this study, a 3D model was developed to study the flow field in air-core vortices.This model is based on the spiral pattern of streamlines and the analytical solution of the momentum and continuity equations for deriving the three components of velocity.The model provides equations for free surface profiles and 3D patterns of the streamlines.Moreover, a new relationship was suggested for calculating effective viscosity and its distribution across the vortex flow field.The performance of the proposed analytical model was compared with existing experimental data and the results of previous analytical models.The outcomes indicated that the proposed model could predict characteristics of the vortex flow with good accuracy.
基金CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnologico)and FAPERGS(Fundacao de Amparoa Pesquisa do Estado do Rio Grande do Sul)for the partial financial support of this work.
文摘In this work we present the solution of the two-dimensional advection-diffusion equation by the GILTT method. The GILTT approach uses, in the series expansion, eigenfunctions given in terms of cosine functions. Here, a different expansion for the solution of the advection-diffusion equation will be explored. In other words, a Sturm-Liouville problem carrying more information of the original problem is considered, given by Bessel functions. Numerical simulations and comparisons with experimental data are presented.
文摘This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Visual analytics were used to examine the impact of various climate change indicators on different aspects of human development. The study highlights the urgent need for climate change action and encourages policymakers to make decisive moves. Climate change adversely affects numerous aspects of daily life, leading to significant consequences that must be addressed through policy changes and global governance recommendations. Key findings include that regions with higher CO2 emissions experience a significantly higher incidence of life-threatening diseases compared to regions with lower emissions. Additionally, higher CO2 emissions correlate with consistent death rates. Increased pollution exposure is associated with a higher prevalence of life-threatening diseases and higher rates of malnutrition. Moreover, greater mineral depletion is linked to more frequent life-threatening diseases, suggesting that industrialization contributes to adverse health effects. These results provide valuable insights for policy and decision-making aimed at mitigating the impact of climate change on human development.
文摘Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.
基金This work was supported by National Natural Science Foundation of China[Grant No.51575325].
文摘To design and check the strength of the Z-type guide arm of interconnected air suspensions for semi-trailers rapidly and effectively,this paper proposes the analytical calculation methods of its deformation and stress.First,based on the guide arm structure,it is marked as two parts by its mountpoint on the axle as the boundary.The part containing the eye was marked as Arm-1.The other part was marked as Arm-2.Then the analytical formulas of their stiffness and stress were derived,respectively.With a case study,the deformation and the stress were computed and simulated.The results show that the values computed are close to those simulated.The relative deviations are not more than 5.0%.The results show that the analytical formulas are acceptable.Moreover,it can be seen that for the superimposed Arm-1,when the other structural parameters are fixed,the position of the maximum stress is affected by the thickness ratio of the end thickness to the root thickness for each piece.Finally,a stiffness test was performed on the Z-type guide arm.The results show that the computed stiffness values are closed to those tested and the relative deviations are not more than 3.5%.This further verified the validity of the established model and methods.