This paper presents the simulation results of a 9000 BTU/h air conditioner with some selected fluids that have been assessed for their suitability as alternatives to R22 for air conditioners. Only those refrigerants w...This paper presents the simulation results of a 9000 BTU/h air conditioner with some selected fluids that have been assessed for their suitability as alternatives to R22 for air conditioners. Only those refrigerants with zero Ozone Depletion Potential (ODP) are considered. The performances of 11 refrigerants were comparatively studied using the simulation software NIST Cycle_D. R134a, R290, R600, R404A, R407A, R407B, R407C, 407D, R410A, R410B, and R417A are considered in this study. The thermal performances, which are obtained with R 134a and R290, are very close to those of R22. The power consumptions of the unit operating with R404A, R407C, and R410A are higher in the range 22-31% with respect of R22. For the units operating with 407A, R407B, R407D, R407E, and R410B, the electric consumptions are higher in the range 10-23%. For R600, the power consumptions are in the range 6-8%. For all the fluids, the COP is lower by 7-24% than R22, except for R600 for which the COP is higher by 7-9%, and R134a and R290 which exhibit the same COP as R22. When considering the thermal and environmental parameters, R290 is identified as the best candidate for R22, provided the safety aspects of using R290 are addressed.展开更多
To evaluate performance and reliability of an air conditioner, the states of its refrigerant in the refrigeration cycle need to be understood. Since the isentropic exponent of the next-generation refrigerant R32 is la...To evaluate performance and reliability of an air conditioner, the states of its refrigerant in the refrigeration cycle need to be understood. Since the isentropic exponent of the next-generation refrigerant R32 is larger than that of conventional refrigerant R410A, the compressor discharge temperature of R32 is higher than that of R410A. When a wet refrigerant is entered into a compressor suction line to decrease the discharge temperature, it is generally difficult to estimate the vapor quality at the suction. This paper describes a method that estimates a vapor quality at the compressor suction by applying energy balances on the compressor with the values of suction pressure, discharge pressure, discharge temperature, etc. In the air conditioner test, the vapor qualities at the compressor suction estimated with this method agreed well with those estimated with the conventional method by measuring liquid and vapor flow-rates. Moreover, this paper derived a relational expression for estimating a compressor suction state from a discharge state and discusses the characteristics of the coefficients in the expression calculated from the test results.展开更多
The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs ...The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi_ 4.4 Mn_ 0.26 Al_ 0.34 / La_ 0.6 Nd_ 0.4 Ni_ 4.8 Mn_ 0.2 Cu_ 0.1 ,LaNi_ 4.61 Mn_ 0.26 Al_ 0.13 /La_ 0.6 Nd_ 0.4 Ni_ 4.8 Mn_ 0.2 Cu_ 0.1 and LaNi_ 4.61 Mn_ 0.26 Al_ 0.13 /La_ 0.6 Y_ 0.4 Ni_ 4.8 Mn_ 0.2 , were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small weight, heat capacity and good heat conductivity of the reaction beds. An experimental metal hydride air-conditioning system was established by using LaNi_ 4.61 Mn_ 0.26 Al_ 0.13 /La_ 0.6 Y_ 0.4 Ni_ 4.8 Mn_ 0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and W_ net =0.09 kW/kg.展开更多
In this study,the potential implementation of three different low-GWP refrigerants(R32,R452B,and R454B)as replacements for R410A was investigated.The study was performed using a simulation tool developed by the author...In this study,the potential implementation of three different low-GWP refrigerants(R32,R452B,and R454B)as replacements for R410A was investigated.The study was performed using a simulation tool developed by the authors called RACHP-Lab,which is a vapor compression system simulation tool developed based on physics-based simulation for typical mini-split air conditioners.The simulation study was carried out and validated using experimental performance data of 10 different air conditioning units available in the Egyptian market.The units included fixed-speed or variable-speed compressors and operated in cooling or heating modes.Drop-in replace-ment with the new refrigerants was carried out.For R32,the capacity increased between 4.9%and 13%for cooling cases,and 6.3%and 12.4%for heating cases.However,COP did not improve in all cases.For R452B and R454B with direct replacement,the capacity nearly remained the same,with an increase of COP between 1.6%and 8.0%.Soft optimization was also conducted on cooling cases where compressor suction superheat,condenser subcooling,and compressor volumetric speed were optimized to maximize COP while maintaining the original capacity of R410A.R32 showed an improvement of COP over R410A between 4.6%and 15.5%,while for R452B and R454B between 2.2%and 13.2%.展开更多
文摘This paper presents the simulation results of a 9000 BTU/h air conditioner with some selected fluids that have been assessed for their suitability as alternatives to R22 for air conditioners. Only those refrigerants with zero Ozone Depletion Potential (ODP) are considered. The performances of 11 refrigerants were comparatively studied using the simulation software NIST Cycle_D. R134a, R290, R600, R404A, R407A, R407B, R407C, 407D, R410A, R410B, and R417A are considered in this study. The thermal performances, which are obtained with R 134a and R290, are very close to those of R22. The power consumptions of the unit operating with R404A, R407C, and R410A are higher in the range 22-31% with respect of R22. For the units operating with 407A, R407B, R407D, R407E, and R410B, the electric consumptions are higher in the range 10-23%. For R600, the power consumptions are in the range 6-8%. For all the fluids, the COP is lower by 7-24% than R22, except for R600 for which the COP is higher by 7-9%, and R134a and R290 which exhibit the same COP as R22. When considering the thermal and environmental parameters, R290 is identified as the best candidate for R22, provided the safety aspects of using R290 are addressed.
文摘It is reported that from March 1 st, 2005, the energy efficiency label will be attached on the household refrigerators and air conditioners in China.
文摘To evaluate performance and reliability of an air conditioner, the states of its refrigerant in the refrigeration cycle need to be understood. Since the isentropic exponent of the next-generation refrigerant R32 is larger than that of conventional refrigerant R410A, the compressor discharge temperature of R32 is higher than that of R410A. When a wet refrigerant is entered into a compressor suction line to decrease the discharge temperature, it is generally difficult to estimate the vapor quality at the suction. This paper describes a method that estimates a vapor quality at the compressor suction by applying energy balances on the compressor with the values of suction pressure, discharge pressure, discharge temperature, etc. In the air conditioner test, the vapor qualities at the compressor suction estimated with this method agreed well with those estimated with the conventional method by measuring liquid and vapor flow-rates. Moreover, this paper derived a relational expression for estimating a compressor suction state from a discharge state and discusses the characteristics of the coefficients in the expression calculated from the test results.
基金The Natural Science Foundation of China (50266063) .
文摘The relationship among the hydrogen storage properties, cycling characteristics and thermal parameters of the metal hydride air conditioning systems was investigated. Based on a new alloy selection model, three pairs of hydrogen storage alloys, LaNi_ 4.4 Mn_ 0.26 Al_ 0.34 / La_ 0.6 Nd_ 0.4 Ni_ 4.8 Mn_ 0.2 Cu_ 0.1 ,LaNi_ 4.61 Mn_ 0.26 Al_ 0.13 /La_ 0.6 Nd_ 0.4 Ni_ 4.8 Mn_ 0.2 Cu_ 0.1 and LaNi_ 4.61 Mn_ 0.26 Al_ 0.13 /La_ 0.6 Y_ 0.4 Ni_ 4.8 Mn_ 0.2 , were selected as the working materials for the metal hydride air conditioning system. Studies on the factors affecting the COP of the system showed that higher COP and available hydrogen content need the proper operating temperature and cycling time,large hydrogen storage capacity, flat plateau and small hysterisis of hydrogen alloys, proper original input hydrogen content and mass ratio of the pair of alloys. It also needs small weight, heat capacity and good heat conductivity of the reaction beds. An experimental metal hydride air-conditioning system was established by using LaNi_ 4.61 Mn_ 0.26 Al_ 0.13 /La_ 0.6 Y_ 0.4 Ni_ 4.8 Mn_ 0.2 alloys as the working materials, which showed that under the operating temperature of 180℃/40℃, a low temperature of 13℃ was reached, with COP =0.38 and W_ net =0.09 kW/kg.
文摘In this study,the potential implementation of three different low-GWP refrigerants(R32,R452B,and R454B)as replacements for R410A was investigated.The study was performed using a simulation tool developed by the authors called RACHP-Lab,which is a vapor compression system simulation tool developed based on physics-based simulation for typical mini-split air conditioners.The simulation study was carried out and validated using experimental performance data of 10 different air conditioning units available in the Egyptian market.The units included fixed-speed or variable-speed compressors and operated in cooling or heating modes.Drop-in replace-ment with the new refrigerants was carried out.For R32,the capacity increased between 4.9%and 13%for cooling cases,and 6.3%and 12.4%for heating cases.However,COP did not improve in all cases.For R452B and R454B with direct replacement,the capacity nearly remained the same,with an increase of COP between 1.6%and 8.0%.Soft optimization was also conducted on cooling cases where compressor suction superheat,condenser subcooling,and compressor volumetric speed were optimized to maximize COP while maintaining the original capacity of R410A.R32 showed an improvement of COP over R410A between 4.6%and 15.5%,while for R452B and R454B between 2.2%and 13.2%.