Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categor...Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.展开更多
With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the ...With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy.展开更多
A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynold...A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.展开更多
A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. ...A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.展开更多
High temperature heat hazard at mineral mine becomes more and more serious as the increase of mining depth.Heat sources at working faces of mineral mines are complex and are of different characteristics,presenting new...High temperature heat hazard at mineral mine becomes more and more serious as the increase of mining depth.Heat sources at working faces of mineral mines are complex and are of different characteristics,presenting new challenges for air conditioning systems.In this paper,heat sources at four types of working faces are summarized and their characteristics are investigated.Based on this,simplified equations,which are linear with length of working faces,are proposed to calculate heat dissipation rates.So that the main heat sources of different working faces can be found,and cooling load of air conditioning systems can be calculated.Then,considering main heat sources of coal mines,a typical working face is designed to investigate performances of different ventilation systems and air conditioning systems.Simulation results show that segmented ventilation systems(SC)and heat shield assisted centralized ventilation systems(CCHS)can realize much better temperature distributions at working faces.However,cooling load can be greatly reduced for CCHS,when untreated air is supplied to the coal seam side.Based on this,free cooling assisted air conditioning systems are designed,and annual average energy efficiency ratio(EERann)of the systems are investigated and compared between direct evaporate cooling and indirect evaporate cooling(IEC).For SC,as compared with scenarios without free-cooling,IEC can increase EERann by 15%-23%and 22%-32%under Benxi and Datong ambient conditions,respectively.Besides,to ensure high EERann,CCHS is preferred and it is essential to increase thermal insulation of air ducts.展开更多
Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in seri...Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in series in the system.This experiment of the energy-saving air-conditioner was carried out in the enthalpy-difference air-conditioner laboratory.The hot water temperature and the compressor's discharge and suction pressure were recorded in the working condition,where the ambient temperature was at 43 ℃,35 ℃,21 ℃,7 ℃,and 2 ℃ separately.The results showed that the system operated stably and reliably.This system can supply 240 L hot water at 50 ℃ in the whole year,and its coefficience of performance(COP)is much higher than the conventional air source heat pump system.Its energy conservation was proved by comparing the thermal efficiency with other sourece water heaters.展开更多
The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. S...The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. Solar air-conditioning systems(SACS) are a promising solution for the reduction of conventional energy in buildings. The storage, especially the cold storage, plays an important role in SACS for unstable solar irradiation. In this paper, we took the absorption refrigerating unit as an example, and the solar air-conditioning system of an office building in Beijing was simulated. The accuracy of this model was verified by comparing with the SACS operation data. Moreover, based on the simulation data, the cold storage capacity of the solar air-conditioning system in different climatic regions was studied. The cold storage capacities of SACS in 20 cities distributed in different climate regions were studied systematically. The results simulated by our proposed model will be beneficial to the SACS design, and will enlarge the application of SACS.展开更多
为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid ...为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。展开更多
太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出...太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出了一种新型组合优化设计策略,并利用TRNSYS软件搭建系统仿真模型,以西安、西宁、拉萨这3座不同太阳能资源等级城市为例,对SAHWS运行工况对比分析。结果表明:与常用生命周期成本设计相比,所提出的组合优化设计不仅降低了系统成本,还有着较低的系统能耗;组合优化设计的热泵能耗与工作小时数最短,且有最低的热损,在投资成本、系统季节性能因子、太阳能保证率以及碳粉尘、二氧化碳排放量均有较好表现。展开更多
文摘Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.
基金Financial supports for this project, provided by the key program supported by the National Natural Science Foundation of China(No. 51134005)the Doctoral Scientific Fund Project of the Ministry of Education of China (No. 20120023120004), are gratefully acknowledged
文摘With the increase of mining depth, more and deeper coal mines are limited by heat disaster. The cooling energy in deep mine cooling system comes from mine water inrush or ground cooling tower, but we cannot adopt the two methods because mine water inrush in many old coal mines in China is limited. What is more, the cooling pipelines cannot be put in narrow pit-shaft. To settle the problem above, according to the characteristics of Zhangxiaolou Coal Mine, this paper adopts the deep mine return air as the cooling energy for deep mine cooling system. In addition, we carried out cite test to extract cold energy from return air. Through monitoring the water quantity, water temperature of cooling system and air temperature, we got the thermodynamic equilibrium parameters during the cooling energy acquisition analysis and the effect of cooling system that the temperature and humidity on working face are respectively reduced to 8-12 ℃ and 8-15% through cooling. This research offers experimental reference for deep mine cooling which lacks cooling energy.
基金Project (50408019) supported by the National Natural Science Foundation of China
文摘A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09+1 种基金2006BAJ02A13-4) supported by the National Key Technologies R&D ProgramProject(2006BAJ01A06-3) supported by the Key R & D Program during the Eleventh Five-Year Plan Period,China
文摘A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.
基金The authors appreciate the support from the National Natural Science Foundation of China(No.51706015)from the Fundamental Research Funds for the Central Universities(FRF-IDRY-19-01).
文摘High temperature heat hazard at mineral mine becomes more and more serious as the increase of mining depth.Heat sources at working faces of mineral mines are complex and are of different characteristics,presenting new challenges for air conditioning systems.In this paper,heat sources at four types of working faces are summarized and their characteristics are investigated.Based on this,simplified equations,which are linear with length of working faces,are proposed to calculate heat dissipation rates.So that the main heat sources of different working faces can be found,and cooling load of air conditioning systems can be calculated.Then,considering main heat sources of coal mines,a typical working face is designed to investigate performances of different ventilation systems and air conditioning systems.Simulation results show that segmented ventilation systems(SC)and heat shield assisted centralized ventilation systems(CCHS)can realize much better temperature distributions at working faces.However,cooling load can be greatly reduced for CCHS,when untreated air is supplied to the coal seam side.Based on this,free cooling assisted air conditioning systems are designed,and annual average energy efficiency ratio(EERann)of the systems are investigated and compared between direct evaporate cooling and indirect evaporate cooling(IEC).For SC,as compared with scenarios without free-cooling,IEC can increase EERann by 15%-23%and 22%-32%under Benxi and Datong ambient conditions,respectively.Besides,to ensure high EERann,CCHS is preferred and it is essential to increase thermal insulation of air ducts.
基金Supported by Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50502)
文摘Energy-saving air-conditioner with hot water is an air source heat pump air-conditioner,which can also supply hot water.The hot water is heated by a double pipe condenser connected with an air-cooled condenser in series in the system.This experiment of the energy-saving air-conditioner was carried out in the enthalpy-difference air-conditioner laboratory.The hot water temperature and the compressor's discharge and suction pressure were recorded in the working condition,where the ambient temperature was at 43 ℃,35 ℃,21 ℃,7 ℃,and 2 ℃ separately.The results showed that the system operated stably and reliably.This system can supply 240 L hot water at 50 ℃ in the whole year,and its coefficience of performance(COP)is much higher than the conventional air source heat pump system.Its energy conservation was proved by comparing the thermal efficiency with other sourece water heaters.
基金funded by the National Key R&D Program of China (No. 2017YFC0702600)
文摘The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. Solar air-conditioning systems(SACS) are a promising solution for the reduction of conventional energy in buildings. The storage, especially the cold storage, plays an important role in SACS for unstable solar irradiation. In this paper, we took the absorption refrigerating unit as an example, and the solar air-conditioning system of an office building in Beijing was simulated. The accuracy of this model was verified by comparing with the SACS operation data. Moreover, based on the simulation data, the cold storage capacity of the solar air-conditioning system in different climatic regions was studied. The cold storage capacities of SACS in 20 cities distributed in different climate regions were studied systematically. The results simulated by our proposed model will be beneficial to the SACS design, and will enlarge the application of SACS.
文摘为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。
文摘太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出了一种新型组合优化设计策略,并利用TRNSYS软件搭建系统仿真模型,以西安、西宁、拉萨这3座不同太阳能资源等级城市为例,对SAHWS运行工况对比分析。结果表明:与常用生命周期成本设计相比,所提出的组合优化设计不仅降低了系统成本,还有着较低的系统能耗;组合优化设计的热泵能耗与工作小时数最短,且有最低的热损,在投资成本、系统季节性能因子、太阳能保证率以及碳粉尘、二氧化碳排放量均有较好表现。