Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the...Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.展开更多
Hybrid<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family...Hybrid<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">chiller plants (HCPs)</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">using multiple chillers and different energy sources</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are highly recommended in several energy applications in non-residential buildings such as hospitals and hotels. Time of use and cooling load profiles are significant factors that should be carefully considered either in chiller plant design or in chiller sequencing operation. This article aims to present an operation planning of HCP which consists of both electric and non-electric chillers. Four operational strategies are proposed and solved to compare their coefficients of performance and economics of running costs. A typical hotel building located on the Nile river in Egypt is selected to perform the current thermal and economic case study. The total cooling load profile of this hotel building is 4000 refrigeration tonnage (TR), which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">simulated to optimize chiller sequence of operation and to select optimal design conditions of both numbers for electric and non-electric chillers used in HCP. The results of this comparative study for running cost are defined using various design configurations with different several chiller sequences available for each configuration. Then, the results of COPs, and operational running cost and initial cost are presented in this article also. The comparison aims to find the optimal design and operational sequencing for HCPs on thermal basis and economic analysis which were attached in this article. Recommendations and suggestions for future work are attached at the end of this article.</span></span></span>展开更多
文摘Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.
文摘Hybrid<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">chiller plants (HCPs)</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">using multiple chillers and different energy sources</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are highly recommended in several energy applications in non-residential buildings such as hospitals and hotels. Time of use and cooling load profiles are significant factors that should be carefully considered either in chiller plant design or in chiller sequencing operation. This article aims to present an operation planning of HCP which consists of both electric and non-electric chillers. Four operational strategies are proposed and solved to compare their coefficients of performance and economics of running costs. A typical hotel building located on the Nile river in Egypt is selected to perform the current thermal and economic case study. The total cooling load profile of this hotel building is 4000 refrigeration tonnage (TR), which </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">simulated to optimize chiller sequence of operation and to select optimal design conditions of both numbers for electric and non-electric chillers used in HCP. The results of this comparative study for running cost are defined using various design configurations with different several chiller sequences available for each configuration. Then, the results of COPs, and operational running cost and initial cost are presented in this article also. The comparison aims to find the optimal design and operational sequencing for HCPs on thermal basis and economic analysis which were attached in this article. Recommendations and suggestions for future work are attached at the end of this article.</span></span></span>